Home About us Contact | |||
ZnII
Terms modified by ZnII Selected AbstractsMacrocyclic Receptor Showing Improved PbII/ZnII and PbII/CaII SelectivitiesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2010Raquel Ferreirós-Martínez Abstract Herein we report on the macrocyclic receptor N,N,-bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-15-crown-5 (H2bp15c5) and its coordination properties towards ZnII, CdII, PbII, and CaII. The stability constants of these complexes determined by pH-potentiometric titration at 25 °C in 0.1 M KNO3 vary in the following order: PbII > CdII >> ZnII > CaII. As a result, bp15c5 presents very important PbII/ZnII and PbII/CaII selectivities. These results are in contrast to those reported for the related receptor derived from 1,7-diaza-12-crown-4, which provides very similar complex stabilities for ZnII and PbII. The X-ray crystal structure of [Cd(Hbp15c5)]+ shows heptadentate binding of the ligand to the metal ion, with two oxygen atoms of the macrocyclic unit remaining uncoordinated. The 1H NMR spectra of the complexes formed with PbII, ZnII, and CaII (D2O) show very broad peaks in the region 2,5 ppm, indicating an important degree of flexibility of the crownmoiety in these complexes. On the contrary, the 1H and 13C NMR spectra recorded for the CdII complex are well resolved and could be fully assigned. A detailed conformational investigation using theoretical calculations performed at the DFT (B3LYP) level predict a minimum energy conformation for [Cd(bp15c5)] that is very similar to that observed in the solid state. Analogous calculations performed on the [M(bp15c5)] (M = Zn or Pb) systems predict hexadentate binding of the ligand to these metal ions. In the case of the PbII complex our calculations indicate that the 6s lone pair is stereochemically active, which results in a hemidirected coordination geometry around the metal ion. The minimum energy conformations calculated for the ZnII, CdII, and PbII complexes are compatible with the experimental NMR spectra obtained in D2O solution. [source] Comparative Solution Equilibrium Study of the Interactions of Copper(II), Iron(II) and Zinc(II) with Triapine (3-Aminopyridine-2-carbaldehyde Thiosemicarbazone) and Related LigandsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2010Éva A. Enyedy Abstract The interactions of CuII, ZnII and FeII with Triapine (3-aminopyridine-2-carbaldehyde thiosemicarbazone), which is currently undergoing phase II clinical trials as a chemotherapeutic antitumour agent, were investigated in a water/DMSO mixture. The proton-dissociation constants of the ligands, the stability constants and the coordination modes of the metal complexes formed were determined by pH-potentiometric, UV/Vis spectrophotometric, EPR, 1H NMR spectroscopic and ESI-MS methods. Two N-terminally dimethylated derivatives of Triapine were also studied. Mono- and bis-ligand complexes in different protonation states were identified. Furthermore, the formation of the dinuclear species [Cu2L3]+ was confirmed for all ligands by EPR spectroscopy and ESI-MS measurements. The results showed that the N-terminally dimethylated ligands are much more potent chelators than Triapine for the divalent metal ions studied. All three ligands formed the least stable complexes with ZnII, whereas the FeII complexes were somewhat more stable than the corresponding CuII species. [source] Metal Complexes of 4,11-Dimethyl-1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) , Thermodynamic and Formation/Decomplexation Kinetic StudiesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2009Ivona Svobodová Abstract The macrocyclic ligand with two methylphosphonic acid pendant arms, 4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid) (1,8-H4Me2te2p, H4L3), was synthesized by a new simple approach. The product of the reaction of quarternized formaldehyde cyclam aminal with the sodium salt of diethyl phosphite was hydrolyzed to give a very high yield of the title ligand. The (H6L3)2+ cation in the solid state is protonated on all ring nitrogen atoms and on each phosphonate group. In the solid-state structure of [Cu(H3L3)][Cu(H2L3)]PF6·3H2O, neutral as well as positively charged complex species are present. Molecular structures of both species are very similar having the copper(II) ion in a coordination environment between square-pyramidal and trigonal-bipyramidal arrangements (, = 0.43 and 0.48) with one pendant arm non-coordinated. The ligand forms stable complexes with transition-metal ions showing a high selectivity for divalent copper atoms. The formation of complexes of the ligand with CuII, ZnII and CdII is fast, confirming the acceleration of complexation due to the presence of the strongly coordinating pendant arms. Acid-assisted decomplexation is fast for all three metal ions. Therefore, the copper(II) complex is not suitable for medicinal applications employing copper radioisotopes, but the title ligand motive can be employed in copper(II) separation. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] One-Dimensional Coordination Polymers of MnII, CuII, and ZnII Supported by Carboxylate-Appended (2-Pyridyl)alkylamine Ligands , Structure and MagnetismEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 22 2009Himanshu Arora Abstract Four new complexes [MnII(L1OO)(H2O)][ClO4]·2H2O (1), [ZnII(L1OO)][ClO4]·2H2O (2), [CuII(L3OO)][CF3SO3]·H2O (3), and [ZnII(L3OO)][ClO4] (4) (L1OO, = 3-[(2-(pyridine-2-yl)ethyl){2-(pyridine-2-yl)methyl}amino]propionate; L3OO, = 3-[(2-(pyridine-2-yl)ethyl){(dimethylamino)ethyl}amino]propionate) have been synthesized and characterized by elemental analysis, IR, and UV/Vis spectroscopy. Structural analysis revealed that 1, 3, and 4 are one-dimensional chain-like coordination polymers. In 1 distorted octahedral MnN3O3 and in 3 square-pyramidal CuN3O2 coordination is satisfied by three nitrogen atoms and an appended carboxylate oxygen atom of the ligand, and an oxygen atom belonging to the carboxylate group of an adjacent molecule. In 4 trigonal bipyramidal ZnN3O2 coordination environment is provided by two nitrogen atoms and an appended carboxylate oxygen atom of the ligand in the equatorial plane, and the two axial positions are satisfied by a tertiary amine nitrogen and an oxygen atom belonging to the carboxylate group of an adjacent molecule. In 1 the MnII center is coordinated by an additional water molecule. In these complexes each monomeric unit is sequentially connected by syn - anti carboxylate bridges. Temperature-dependent magnetic susceptibilities for 1 and 3 are measured, revealing antiferromagnetic interactions through syn - anti carboxylate bridges between the MII centers. Analysis of the crystal packing diagram reveals that in 1 extensive ,,, stacking involving alternate pyridine rings of adjacent 1D chain exists, which eventually lead to the formation of a 2D network structure. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Oxido Pincer Ligands , Exploring the Coordination Chemistry of Bis(hydroxymethyl)pyridine Ligands for the Late Transition MetalsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2009Axel Klein Abstract Coordination of the 2,6-bis(hydroxymethyl)pyridine-based oxido pincer ligands RR,pydimH2 [R = R, = H (pydimH2); R = R, = Me (pydipH2); R = 2-tolyl, R, = Me (pydotH2)] towards late transition metals CoII, NiII, CuII, ZnII, PdII and PtII allows the formation of molecular species (complexes), which exhibit three main structural motifs in the solid state. The two main species are pentacoordinate [(RR,pydimH2)MCl2] and hexacoordinate [(RR,pydimH2)2M]X2, both of which are stable in solution and can be interconverted by changing the solvent polarity. The disproportionation equilibrium [(RR,pydimH2)MCl2] [rlhar2] [(RR,pydimH2)2M]2+ + [MCl4]2, was studied by optical spectroscopy. The chiral ligand pydotH2 allows the formation of chiral complexes. In the square-planar complexes [(pydimH2)2MCl2] (M = PdII or PtII) the oxido donor functions of the ligands do not take part in the coordination.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source] Design of Neutral Metallomesogens from 5,5-Dimethyldipyrromethane: Metal Ion Mediated Control of Folding and Hairpin StructuresEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 32 2008Kelly A. Ames Abstract New ligands derived from 5,5-dimethyldipyrromethane and their corresponding neutral complexes with ZnII and PdII are described. The ligands incorporate either a hexacatenar [H2(1n), n = 1, 10, 12, 14 and 16], tetracatenar [H2(2n), n = 1 and 16] or an extended dicatenar structure [H2(3n), n = 1and 16]. Single-crystal X-ray structure determinations of [Zn2(11)2] and [Zn2(31)2] confirm a distorted tetrahedral geometry at ZnII to afford double-stranded helical structures, while the PdII species [Pd(31)] shows a distorted square-planar geometry with the ligand adopting an alternative hairpin conformation. The metal-free hexacatenar ligands H2(1n) (n = 10, 12, 14, 16) and the corresponding complexes [Zn2(116)2] and [Pd(1n)] (n = 12, 14, 16) are not mesomorphic. However, the tetracatenar complex [Zn2(216)2] generates a smectic mesophase, as confirmed by X-ray diffraction, while [Pd(216)] and the metal-free ligand H2(216) show no mesomorphic behaviour. Two of the extended dicatenar compounds, H2(316) and [Zn2(316)2] are non-mesomorphic, while [Pd(316)] displays a smectic A phase.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Checking the Route to Cluster HelicatesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 24 2008Manuel R. Bermejo Abstract The aim of the work described here was to test the general applicability of our recently reported route to cluster helicates and to carry out a systematic study to relate the structural and coordinative properties of the organic strands with the microarchitectures of the resulting cluster helicates. Nine new ZnII, CuI and AgI complexes were prepared from three Schiff base ligands [H2La: bis(4-methyl-3-thiosemicarbazone)-2,6-diacetylpyridine; H2Lb: bis(4-methyl-3-thiosemicarbazone)-2,6-diacetylbenzene; H2Lc: bis(4-ethyl-3-thiosemicarbazone)-2,6-diacetylbenzene]. The experimental data confirm that AgI and CuI tetranuclear cluster helicates were obtained with a [M4(Lx)2] stoichiometry, and this finding demonstrates the general applicability of the synthetic route. The cluster helicates presented in this work were characterized for the first time in solution by NMR spectroscopy. In addition, six of the nine complexes were characterized by X-ray diffraction studies, and three of them were found to be tetranuclear cluster helicates. A detailed study of these three crystal structures leads us to state that the changes introduced in the organic strands do not prevent the assembly of the tetranuclear cluster dihelicates, but they do affect the microarchitectures. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Receptor versus Counterion: Capability of N,N, -Bis(2-aminobenzyl)-diazacrowns for Giving Endo- and/or Exocyclic Coordination of ZnIIEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2007Lea Vaiana Abstract The structure of ZnII complexes with receptors L1 and L2[L1 = N,N, -bis(2-aminobenzyl)-1,10-diaza-15-crown-5 and L2 = N,N, -bis(2-aminobenzyl)-4,13-diaza-18-crown-6] was studied both in the solid state and in acetonitrile solution. Both receptors form mononuclear ZnII complexes in this solvent, while no evidence for the formation of dinuclear complexes was obtained. This is in contrast with previous investigations that demonstrated the formation of dinuclear complexes of L2 with first-row transition metals such as NiII, CoII and CuII. Compounds of formula [Zn(L1)](ClO4)2 (1), [Zn(L1)](NO3)2·2CH3CN (2), [Zn(L2)](ClO4)2 (3) and [Zn(L2)(NO3)2] (4) were isolated and structurally characterised by X-ray diffraction analyses. L1 forms seven-coordinate ZnII complexes in the presence of both nitrate and perchlorate anions, as a consequence of the good fit between the macrocyclic cavity and the ionic radius of the metal ion. The ZnII ion is deeply buried into the receptor cavity and the anions are forced to remain out of the metal coordination sphere. The cation [Zn(L1)]2+ present in 1 and 2 is one of the very few examples of seven-coordinate Zn complexes. Receptor L2 provides a very rare example of a macrocyclic receptor allowing endocyclic and exocyclic coordination on the same guest cation, depending on the nature of the anion present. Thus, in 3 the ZnII ion is endocyclically coordinated, placed inside the crown hole coordinated to four donor atoms of the ligand in a distorted tetrahedral environment, whereas in 4, the presence of a strongly coordinating anion such as nitrate results in an exocyclic coordination of ZnII, which is directly bound only to the two primarily amine groups of L2 and two nitrate ligands. Spectrophotometric titrations of [Zn(L2)]2+ with tetrabutylammonium nitrate in acetonitrile solution demonstrate the stepwise formation of 1:1 and 1:2 adducts with this anion in acetonitrile solution. The [Zn(L1)]2+, [Zn(L2)]2+ and [Zn(L2)(NO3)2] systems were characterised by means of DFT calculations (B3LYP model). The calculated geometries show an excellent agreement with the experimental structures obtained from X-ray diffraction analyses. Calculated binding energies of the macrocyclic ligands to ZnII are also consistent with the experimental data.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Synthesis, Complexation and Spectrofluorometric Studies of a New NS3 Anthracene-Containing Macrocyclic LigandEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2006Abel Tamayo Abstract A new fluorescent device for detecting protons and metal ions, 11-(9-anthracenylmethyl)-1,4,7-trithia-11-azacyclotetradecane (L), has been synthesised. In addition, the photophysical properties of both the free and protonated species have been examined by absorption and fluorescence titrations of dichloromethane solutions of L with methanesulfonic acid. The coordinating properties of L toward PdII, ZnII, NiII and CoII have been studied both in solution and in the solid state. Different behaviours have been observed in the absorption and fluorescence titrations of L with the above-mentioned transition-metal ions. To evaluate whether these differences were due to the existence of equilibria between protonated and complexed species, such titrations have been repeated in the presence of an equivalent amount of acid. The structure of the [Pd(L)](BF4)2 complex has been solved by X-ray crystallography. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] X-ray Crystal Structure and Characterization in Aqueous Solution of{N,N,-Ethylenebis(pyridoxylaminato)}zinc(II)EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 3 2006Isabel Correia Abstract The complexation of ZnII with H2Rpyr2en [H2Rpyr2en = N,N,-ethylenebis(pyridoxylaminato)] in aqueous solution has been studied by pH potentiometry and 1H NMR spectroscopy. Complex formation constants are determined and binding modes proposed. Complex formation starts at around pH 4, and several species with a 1:1 ligand-to-metal ratio with different protonation states form up to pH 12. Only above pH 10 does a hydrolytic species [ZnLH,1], become important. The crystal and molecular structures of [ZnCl(H2Rpyr2en)]+Cl,·1.5H2O (1) have been determined by X-ray diffraction. The coordination of the H2Rpyr2en ligand involves the two phenolate-O and two amine-N atoms in a distorted square-pyramidal geometry. The two pyridine-N atoms are protonated, and a Cl, atom completes the coordination sphere. Upon coordination, both N-amine atoms of H2Rpyr2en become stereogenic centres, and in both molecules of the unit cell of 1 one of the N-amine donors has an (R)-configuration, and the other an (S)-configuration. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Non-Covalent Aggregation of Discrete Metallo-Supramolecular Helicates into Higher Assemblies by Aromatic Pathways: Structural and Chemical Studies of New Aniline-Based Neutral Metal(II) DihelicatesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2005Miguel Vázquez Abstract Neutral manganese(II), iron(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) complexes with an N -tosyl-substituted N4 -donor Schiff base containing a 4,4'-methylenedianiline residue as spacer [H2La: N,N' -bis(2-tosylaminobenzylidene)-4,4'-methylenedianiline], and the zinc(II) complex with an analogous ligand [H2Lb: N,N' -bis(2-tosylaminobenzylidene)-4,4'-oxodianiline] have been prepared by an electrochemical procedure. FAB and ESI mass spectra of the complexes show peaks due to species corresponding to a general formula [M2(La,b)2 + H]+, thereby suggesting their dinuclear nature. A detailed study of the crystal packing in the unit cell of the zinc(II) complex with H2La shows that the helicates aggregate to form discrete prismatic moieties containing three molecules held together by ,,, and ,,, interactions. Moreover, the ZnII neutral dihelicate with H2Lb forms a 3D network in the solid state due to intermolecular ,-stacking interactions. 1H NMR studies of the diamagnetic compounds reported herein have been performed. Finally, the ligand H2La and its ZnII and CdII complexes have been studied by spectrophotometric and spectrofluorimetric techniques in order to get a better understanding of the formation mechanisms of the complexes and of the nature of their fluorescence emission. Emission studies show that the ZnII and CdII dihelicates with H2La display a green fluorescence in acetonitrile solution (, = 473 nm, , = 0.03 and , = 476 nm, , = 0.01, respectively). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Hybrid 2D and 3D Frameworks Based on ,-Keggin Polyoxometallates: Experiment and SimulationEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2005Anne Dolbecq Abstract The ,-Keggin polyoxomolybdate {,-PMoV8MoVI4O40,x(OH)xM4} is a versatile building unit, with M being either a ZnII or a LaIII capping ion located at the vertices of a slightly distorted tetrahedron. The charge of the Keggin unit depends on the number of protonated oxo bridging ligands, which has been shown to vary from 0 to 5. The Keggin entity can thus be either an anion (M = Zn, x = 0) or a cation (M = La, x = 3,5). The Zn derivative has been generated in situ by hydrothermal synthesis and forms a 2D material built from the connection of the cations by 4,4'-bipyridine ligands linked to the capping ZnII ions. The reaction of the chloride salt of the La derivative with di-, tri- and tetrasubstituted benzenecarboxylate ligands has allowed us to isolate 2D and 3D materials. The 3D materials seem to be the first examples of hybrid open frameworks based on Keggin building blocks. The 3D framework built from the connection of ,-Keggin units by trimesate ions exhibits tunnels filled only by water molecules, which can be partly removed and reintroduced at room temperature. Besides these experimental results, simulation has allowed us to generate two virtual hybrid structures derived from those of known silicates by replacing the Si ions by hypothetical ,-Keggin cations and the O -bridging ligands by terephthalate ions, thus showing that 3D frameworks with large pores can be envisioned in the chemistry of hybrid organic,inorganic materials based on ,-Keggin units and motivating further experimental investigations. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Mono- and Dinuclear CuII and ZnII Complexes of Cyclen-Based Bis(macrocycles) Containing Two Aminoalkyl Pendant Arms of Different LengthsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2005Carmen Anda Abstract The basicity and coordination properties towards CuII and ZnII of the bis(macrocycles) L1, L2 and L3 have been investigated by means of potentiometric, 1H NMR and UV/Vis spectroscopic titrations in aqueous solutions. The synthesis of L1 and L3 is also described. The three ligands are composed of two [12]aneN4 units separated by a p- phenylene spacer and differ in the length of the aminoalkyl pendant arms linked to each macrocyclic unit. L1,L3 form mono- and dinuclear complexes in aqueous solutions; in the dinuclear species each metal ion is coordinated by one of the two identical [12]aneN4 ligand moieties, as shown by the crystal structures of the complexes [Cu2L1]Cl4·8H2O, [Zn2L2](ClO4)4 and [Zn2L3](ClO4)4·H2O. In all structures the metal ion is pentacoordinate, and is bound to the four nitrogen donors of the cyclic unit and to the amine group of the side arm. The stability of both the [ML]2+ and [M2L]4+ complexes in aqueous solution decreases in the order L1 > L2 > L3. At the same time, both the [Cu2L]4+ and [Zn2L]4+ complexes show a different ability in proton binding among the three ligands, with the [M2L1]4+ complexes displaying the highest basicity. These results are explained in terms of the decreasing number of nitrogen donors involved in CuII or ZnII binding on passing from L1 to L3; in other words, while in the L1 dinuclear complexes each metal ion is coordinated to the four amine groups of a [12]aneN4 moiety and to the amine group of the side arm, in the L3 ones the metal cations are bound only to the four donor atoms of a cyclic moiety, the aminobutyl group not being coordinated. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Electronic Interactions in Ferrocene- and Ruthenocene-Functionalized Tetraazamacrcocyclic Ligand Complexes of FeII/III, CoII, NiII, CuII and ZnIIEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2005Peter Comba Abstract The syntheses of ferrocene- and ruthenocene-functionalized tetraazamacrocyclic ligands and their corresponding transition metal complexes are described. Reaction of N,N, -bis(2-aminoethyl)-1,3-propanediamine (2,3,2-tet) with 1,1,-diformylferrocene and 1,1,-diformylruthenocene produces the ligands fcmac and rcmac in 81,85% yield. Examination of their CuII, NiII, CoII, ZnII and FeII/III complexes by IR, UV/Vis, EPR and Mössbauer spectroscopy as well as by electrochemical studies suggests electronic communication between the two metal centers of each complex. The molecular structure of [CuII(fcmac)(FBF3)]BF4, determined by X-ray structure analysis, is reported and shows that the distance between the two metals is 4.54 Ĺ. Stability constants, determined by potentiometric titration, indicate that the copper(II) complexes are of similar stability as those with unfunctionalized tetraazamacrocyclic ligands (e.g. cyclam = 1,4,8,11-tetraazacyclotetradecane); stability constants of cobalt(II) complexes are about 2 log units smaller, those of nickel(II) and zinc(II) complexes are reduced by more than 10 log units. This selectivity is discussed on the basis of the structural studies. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source] Structure Comparison of Early and Late Lanthanide(III) Homodinuclear Macrocyclic Complexes with the Polyamine Polycarboxylic Ligand H8OHECEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 19 2004Ulrike A. Böttger Abstract The solid-state structures of two new homodinuclear chelate complexes with the late lanthanide(III) ions Yb and Lu, [Na2(Yb2OHEC)].14.5H2O (1), and [Na2(Lu2OHEC)].14.5H2O (2) (H8OHEC = 1,4,7,10,14,17,20,23-octaazacyclohexacosane- 1,4,7,10,14,17,20,23-octaacetic acid), have been determined by X-ray crystal structure analysis. Each lanthanide(III) ion is coordinated by eight donor atoms of the ligand and the geometry of the coordination polyhedron approaches a bicapped trigonal prism. These structures are compared with those of the homodinuclear chelate complexes with the same ligand and the mid to early lanthanide(III) ions Gd, Eu, La and also Y. A distinctive structural change occurs across the lanthanide series. The centrosymmetric mid to early lanthanide(III) complexes are all ninefold-coordinated in a capped square antiprismatic arrangement with a water molecule coordinated in a prismatic position. This structure is maintained in aqueous solution, together with an asymmetric minor isomer. The late lanthanide(III) OHEC complexes not only lack the inner-sphere water, but the change of coordination sphere also results in a loss of symmetry of the whole complex molecule. The observed change of coordination mode and number of the lanthanide ion may offer a geometric model for the isomerization process in eight- and ninefold-coordinated complex species that are isomers in a possible coordination equilibrium observed by NMR in aqueous solution. This model may also explain the intramolecular rearrangements necessary during water exchange in the inner coordination sphere of the complex [(Gd2OHEC)(H2O)2]2, through a slow dissociative mechanism. Protonation constants of the H8OHEC ligand and complex formation constants of this ligand with GdIII, CaII, CuII and ZnII have been determined by solution thermodynamic studies. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Synthesis and Characterisation of Coordination Polymers of CuII and ZnII with 1,3-Bis(1,2,3,4-tetrazol-2-yl)propane , Rotational Freedom of the Donor Group Favours Structural DiversificationEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 18 2004Robert Bronisz Abstract The novel bidentate ligand 1,3-bis(1,2,3,4-tetrazol-2-yl)propane (pbtz), which possesses a flexible spacer, was synthesised in order to investigate the influence of the flexibility of ligand molecules on the architecture of coordination polymers. For that purpose the reactions between pbtz and M(ClO4)2·6H2O salts (M = CuII and ZnII) were performed. The complexes [{Cu(pbtz)3}(ClO4)2], and [{Zn(pbtz)3}(ClO4)2·2EtOH], were characterised by IR and UV/Vis spectroscopy and their crystal structures were determined by single-crystal X-ray diffraction measurements. In both compounds the pbtz ligand molecules act as N4,N4, connectors bridging the central atoms, and the 2-substituted tetrazole rings coordinate in a monodentate fashion to the central atoms forming M(tetrazole)6 cores. [{Cu(pbtz)3}(ClO4)2], was isolated as a 1D coordination polymer. The copper(II) ions are triply bridged by ligand molecules, leading to the formation of infinite 1D chains. A highly unusual manner of bridging, with the tethering of two neighbouring central atoms by the same kind of ligand molecules, although possessing different conformations, is observed. In [{Zn(pbtz)3}(ClO4)2·2EtOH], the six-coordinate zinc(II) ions, which are bridged by single ligand molecules, serve as topological nodes, leading to the formation of a 3D ,-polonium-type network. The crystal structure of the ZnII complex contains only one such net solvated by ethanol molecules. A conformational analysis of the ligand molecules in both compounds demonstrates that the flexibility of the pbtz and the ability of the tetrazole rings in particular to adopt various, relative orientations is responsible for the diversity of the architectures of the obtained complexes. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Funnel Complexes with CoII and NiII: New Probes into the Biomimetic Coordination Ability of the Calix[6]arene-Based Tris(imidazole) SystemEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 9 2004Olivier Sénčque Abstract The coordination properties of the calix[6]arene-based tris(imidazole) ligand X6Me3Imme3 were further explored with CoII and NiII. This imidazole system stabilizes tetrahedral mononuclear CoII complexes with an exchangeable fourth exogenous ligand (water, alcohol, amide) located at the heart of the hydrophobic calixarene cavity. With a weak donor ligand such as a nitrile, both four-coordinate tetrahedral and five-coordinate trigonal bipyramidal complexes were obtained. The latter contains a second nitrile molecule trans to the included guest nitrile. These complexes were characterized in solution as well as in the solid state. The NiII complexes are square-based pyramidal five-coordinate edifices with a guest nitrile inside the cavity and a water molecule outside. A comparison with previously described ZnII and CuII complexes emphasizes the flexibility of this ligand. A comparison with carbonic anhydrase, a mononuclear zinc enzyme with a tris(histidine) coordination core, shows that X6Me3Imme3 displays many structural features of this enzyme except for the cis coordination of the exogenous ligands. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Synthesis, Characterization and Electrochemistry of the Novel Dawson-Type Tungstophosphate [H4PW18O62]7, and First Transition Metal Ions DerivativesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2004Israel-Martyr Mbomekalle Abstract Following the synthesis of pure [H4PW18O62]7, (PW18), its derivatives monosubstituted with M (M = MoVI, VIV, VV, MnII, FeIII, CoII, NiII CuII and ZnII) were obtained. All compounds were characterized by elemental analysis, IR, UV/visible and 31P NMR spectroscopy. Their cyclic voltammetry properties were studied as a function of pH and systematically compared with those of their analogs derived from the symmetrical species, [P2W18O62]6,(P2W18). Comparison of the two unsubstituted precursors revealed that the merging of the first two waves of the monophosphate occurred in a less acidic medium than for the diphosphate. The observations point to the higher basicity of the reduced forms of PW18 compared with those of P2W18. The fingerprint pattern observed for ,2 -P2W17M derivatives in media of pH = 3 consisted of the splitting of the third W redox system into two one-electron closely spaced waves which is in contrast to the same system in ,1 -P2W17M. This peculiarity was also obtained for several of the present ,2 -PW17M systems in media of pH = 3 and confirmed that ,2 -substituted derivatives were indeed formed. The absence of this peculiar behavior in some other derivatives is consistent with smooth variations of acid-base properties from one derivative to the next. The electrocatalytic properties of all the compounds are illustrated by the reduction of nitrite by reduced PW18 and of nitrate by reduced ,2 -PW17Cu. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Self-Organization of Dipolar 4,4,-Disubstituted 2,2,-Bipyridine Metal Complexes into Luminescent Lamellar Liquid CrystalsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 19 2003Daniela Pucci Abstract Mononuclear cis -dichloro complexes, [LnMCl2], with different metal centres (PtII, NiII, and ZnII) and a series of palladium and platinum derivatives, [L2MX2], in which chloride groups are replaced with iodide, bromide, and azide ligands, have been synthesized from 4,4,-disubstituted-2,2,-bipyridines. Upon complexation of these non-mesogenic ligands, the peculiar structural arrangement, characterized by intermolecular associations of the new derivatives, induces mesomorphism in most [L2MX2] complexes, confirming the importance of coordination chemistry in metal-mediated formation of liquid crystals. Single crystal X-ray structures have been determined for dihexadecyl 2,2,-bipyridyl-4,4,-dicarboxylatopalladium and -zinc dichloride derivatives. Both the metal centres and the ancillary ligands have been varied to use dipole coupling as a tool to control molecular architecture: thermal, as well as spectroscopic properties, depend strongly upon molecular dipolar interactions. Tunable red and blue emitters based on PdII and PtII, both in solution and in the solid state, have been obtained. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] A Metal,Macrocycle Complex as a Fluorescent Sensor for Biological Phosphate Ions in Aqueous SolutionEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 10 2010Xiao-huan Huang Abstract We synthesized tetraazamacrocycles 1 and 2 bearing two anthryl groups as sidearms, both of which exhibited high selectivity for the ZnII ion in switching-on-type responses in aqueous solution. For ligand 1, ZnII is coordinated by four nitrogen atoms of the macrocycle and two amino groups on the pendent arms, which results in proximity between the twofluorophores. So, 1 -ZnII shows obvious excimer emission in aqueous solution. When PPi or ATP was added (pH 7.4), the excimer emission of 1 -ZnII was quenched, whereas monomer emission was revived. To the best of our knowledge, no other known sensor has this characteristic under physiological pH conditions. At the same time, the obvious different fluorescence response of 1 -ZnII for PPi and ATP in water shows that receptor 1 -ZnII can be used as a selective fluorescent chemosensor for PPi and ATP anions. [source] Synthesis of Doubly Strapped meso,meso -Linked Porphyrin Arrays and Triply Linked Conjugated Porphyrin TapesEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 14 2006Toshiaki Ikeda Abstract 1,10-Dioxydecamethylene doubly strapped ZnII -porphyrin S1 was prepared and treated with AgPF6 to give meso,meso -linked porphyrin oligomers Sn (n = 2, 3, 4, 6, 8, and 12), which were converted to triply linked porphyrin tapes TSn by meso,meso, -dibromo meso,meso -linked porphyrin arrays BSn and meso,meso, -diphenyl meso,meso -linked porphyrin arrays PSn. The structures of S1 and S2 have been determined by single-crystal X-ray diffraction analysis. Characteristically, Sn exhibit sharp Q(0,0) absorption and fluorescence bands. Low energy Q-band-like absorption bands of TSn are progressively red-shifted with an increase in the number of porphyrins without saturation behavior of conjugation. The double straps suppress ,,, stacking to some extent as seen from partial preservation of vibration structures in the Q-band-like bands of TS4 and TS6 and improve the chemical stabilities of longer tapes such as TS8 and TS12. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Effects of Zinc(II) on the Luminescence of Europium(III) in Complexes Containing , -Diketone and Schiff BasesHELVETICA CHIMICA ACTA, Issue 11 2009Yuko Hasegawa Abstract The UV, excitation, and luminescence spectra of tris(pivaloyltrifluoroacetonato)europium(III) ([Eu(pta)3]; Hpta=1,1,1-trifluoro-5,5-dimethylhexane-2,4-dione=HA) were measured in the presence of bis(salicylidene)trimethylenediamine (H2saltn), bis[5-(tert- butyl)salicylidene]trimethylenediamine (H2(tBu)saltn), or bis(salicylidene)cyclohexane-1,2-diyldiamine (H2salchn), and the corresponding ZnII complexes [ZnB] (B=Schiff base). The excitation and luminescence spectra of the solution containing [Eu(pta)3] and [Zn(salchn)] exhibited much stronger intensities than those of solutions containing the other [ZnB] complexes. The introduction of a tBu group into the Schiff base was not effective in sensitizing the luminescence of [Eu(pta)3]. The luminescence spectrum of [ZnB] showed a band around 450,nm. The intensity decreased in the presence of [Eu(pta)3], reflecting complexation between [Eu(pta)3] and [ZnB]. On the basis of the change in intensity against the concentration of [ZnB], stability constants were determined for [Eu(pta)3Zn(saltn)], [Eu(pta)3Zn{(tBu)saltn}], and [Eu(pta)3Zn(salchn)] as 4.13, 4.9 and 5.56, respectively (log,, where =[[Eu(pta)3ZnB]]([[Eu(pta)3]][[ZnB]]),1). The quantum yields of these binuclear complexes were determined as 0.15, 0.11, and 0.035, although [Eu(pta)3Zn(salchn)] revealed the strongest luminescence at 613,nm. The results of X-ray diffraction analysis for [Eu(pta)3Zn(saltn)] showed that ZnII had a coordination number of five and was bridged with EuIII by three donor O-atoms, i.e., two from the salicylidene moieties and one from the ketonato group pta. [source] Direct Amination of meso -Tetraarylporphyrin Derivatives , Easy Route to A3B-, A2BC-, and A2B2 -Type Porphyrins Bearing Two Nitrogen-Containing Substituents at the meso -Positioned Phenyl GroupsHELVETICA CHIMICA ACTA, Issue 10 2007Stanis, aw Ostrowski Abstract meso -Tetraarylporphyrinato complexes 1a,g (ZnII, CuII, and NiII) bearing one or two nitro-substituted aryl moieties react with 1,1,1-trimethylhydrazinium iodide in the presence of tBuOK in THF at 0,5° or in the presence of KOH in DMSO at 60,70° according to a nucleophilic substitution of an H-atom, thus affording porphyrins 2a,g and 3f,g with amino-functionalized meso -positioned aryl substituents in yields up to 73% (Scheme,1 and Table). The products obtained are attractive intermediates for further derivatization of porphyrins and may be of potential use as sensitizers in photodynamic cancer therapy. [source] Second-Generation Inhibitors for the Metalloprotease Neprilysin Based on Bicyclic Heteroaromatic Scaffolds: Synthesis, Biological Activity, and X-Ray Crystal-Structure AnalysisHELVETICA CHIMICA ACTA, Issue 4 2005Stefan Sahli A new class of nonpeptidic inhibitors of the ZnII -dependent metalloprotease neprilysin with IC50 values in the nanomolar activity range (0.034,0.30,,M) were developed based on structure-based de novo design (Figs.,1 and 2). The inhibitors feature benzimidazole and imidazo[4,5- c]pyridine moieties as central scaffolds to undergo H-bonding to Asn542 and Arg717 and to engage in favorable , - , stacking interactions with the imidazole ring of His711. The platform is decorated with a thiol vector to coordinate to the ZnII ion and an aryl residue to occupy the hydrophobic S1, pocket, but lack a substituent for binding in the S2, pocket, which remains closed by the side chains of Phe106 and Arg110 when not occupied. The enantioselective syntheses of the active compounds (+)- 1, (+)- 2, (+)- 25, and (+)- 26 were accomplished using Evans auxiliaries (Schemes,2, 4, and 5). The inhibitors (+)- 2 and (+)- 26 with an imidazo[4,5- c]pyridine core are ca. 8 times more active than those with a benzimidazole core ((+)- 1 and (+)- 25) (Table,1). The predicted binding mode was established by X-ray analysis of the complex of neprilysin with (+)- 2 at 2.25-Ĺ resolution (Fig.,4 and Table,2). The ligand coordinates with its sulfanyl residue to the ZnII ion, and the benzyl residue occupies the S1, pocket. The 1H -imidazole moiety of the central scaffold forms the required H-bonds to the side chains of Asn542 and Arg717. The heterobicyclic platform additionally undergoes ,-, stacking with the side chain of His711 as well as edge-to-face-type interactions with the side chain of Trp693. According to the X-ray analysis, the substantial advantage in biological activity of the imidazo-pyridine inhibitors over the benzimidazole ligands arises from favorable interactions of the pyridine N-atom in the former with the side chain of Arg102. Unexpectedly, replacement of the phenyl group pointing into the deep S1, pocket by a biphenyl group does not enhance the binding affinity for this class of inhibitors. [source] Complexation of late transition metal(II) ions (M,=,Co, Ni, Cu, and Zn) by a macrocyclic thiacrown ether studied by means of electrospray ionization mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2009Nikos G. Tsierkezos Electrospray ionization mass spectrometry (ESI-MS) is used to probe the metal-binding selectivity of a macrocyclic thiacrown ether (C44H32S20) towards CoII, NiII, CuII, and ZnII. In homogeneous 1:1 v/v methanol/dichloromethane solutions, it is found that the thia ligand very selectively binds traces of copper even in the presence of an excess of the other metal ions. The large selectivity is ascribed to the redox-active nature of copper which enables a reduction from CuII to CuI, occurring upon ESI-MS, whereas CoII, NiII and ZnII cannot undergo similar redox reactions. Copyright © 2009 John Wiley & Sons, Ltd. [source] (Acetato-,O)[tris(3,5-dimethylpyrazol-1-yl-,N2)hydroborato]zinc(II)ACTA CRYSTALLOGRAPHICA SECTION C, Issue 8 2009Azizolla Beheshti The title complex, [Zn(C15H22BN6)(C2H3O2)] or (TpMe,Me)Zn(OAc), contains a tripodal tris(pyrazolyl)hydroborate ligand, a monodentate acetate ligand and a ZnII centre in a distorted tetrahedral coordination environment capped on one triangular face by a secondary Zn...O interaction with the second O atom of the acetate ligand. The four-coordination of ZnII and the essentially monodentate character of the acetate ligand are due to the high steric demands of the ligand set, which prevent chelate formation and five-coordination and lead to relatively long Zn,O and Zn,N bonds compared with related complexes of ZnII and other metals. [source] Transition metal complexes with thiosemicarbazide-based ligands.ACTA CRYSTALLOGRAPHICA SECTION C, Issue 6 2002XLIII. In the title compound, [ZnCl(C2H7N3S)2]Cl, the ZnII ion is five-coordinated in a distorted trigonal,bipyramidal arrangement, with the hydrazine N atoms located in the apical positions. The structure is stabilized by N,H,Cl hydrogen bonds, which involve both the Cl atoms and all the hydrogen donors, except for one of the two thioamide N atoms. A comparison of the geometry of thiosemicarbazide and S -methylisothiosemicarbazide complexes with ZnII, CuII and NiII shows the pronounced influence of the hydrogen-bond network on the coordination geometry of ZnII compounds. [source] The porphobilinogen synthase family of metalloenzymesACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2000Eileen K. Jaffe The porphobilinogen synthase (PBGS) family of enzymes catalyzes the first common step in the biosynthesis of the essential tetrapyrroles such as chlorophyll and porphyrin. Although PBGSs are highly conserved at all four levels of protein structure, there is considerable diversity in the use of divalent cations for the catalytically essential and allosteric roles. Assumptions regarding commonalities among the PBGS proteins coupled with the diversity of usage of metal ions has led to a confused literature. The recent publication of crystal structures for three PBGS proteins coupled with more than 50 individual PBGS sequences allows an evaluation of these assumptions. This topical review focuses on the usage of metals by the PBGS family of proteins. It raises doubt concerning a dogma that there has been an evolutionary shift between ZnII and MgII at one or more of the divalent metal-binding sites. It also raises the possibility that there may be up to four specific divalent metal ion-binding sites, each serving a unique function that can be alternatively filled by amino acids in some of the PBGSs. [source] Metal-Stimulated Regulation of Transcription by an Artificial Zinc-Finger ProteinCHEMBIOCHEM, Issue 12 2010Miki Imanishi Dr. Transcriptional switch: A zinc-finger protein (CDH2-ZF3) has been created in which a Cys was replaced by an Asp. The ZnII binding affinity of the CDH2-type zinc finger was decreased by ,500 times compared to wild (C2H2) type. The DNA binding of CDH2-ZF3 could be controlled by the ZnII concentration, and a CDH2-ZF3-based artificial transcription factor clearly showed ZnII -responsive transcriptional activity. [source] Structural and Electronic Properties of Hetero-Transition-Metal Keggin Anions: A DFT Study of ,/,-[XW12O40]n- (X: CrVI, VV, TiIV, FeIII, CoIII, NiIII, CoII, and ZnII) Relative Stability.CHEMINFORM, Issue 16 2007Fu-Qiang Zhang Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] |