Zirconium Phosphate (zirconium + phosphate)

Distribution by Scientific Domains


Selected Abstracts


Effect of Enzyme and Cofactor Immobilization on the Response of Ethanol Oxidation in Zirconium Phosphate Modified Biosensors

ELECTROANALYSIS, Issue 10 2010
Mitk'El
Abstract Two different self-contained ethanol amperometric biosensors incorporating layered [Ru(phend)2bpy]2+ -intercalated zirconium phosphate (ZrP) as the mediator as well as yeast -alcohol dehydrogenase (y- ADH) and its cofactor nicotinamide adenine dinucleotide (NAD+) were constructed to improve upon a design previously reported where only this mediator was immobilized in the surface of a modified electrode. In the first biosensor, a [Ru(phend)2bpy]2+ -intercalated ZrP modified carbon paste electrode (CPE) was improved by immobilizing in its surface both y- ADH and NAD+ using quaternized Nafion membrane. In the second biosensor, a glassy carbon electrode was modified with [Ru(phend)2bpy]2+ -intercalated ZrP, y- ADH, and NAD+ using Nafion as the holding matrix. Calibration plots for ethanol sensing were constructed in the presence and absence of ZrP. In the absence of ZrP in the surface of the modified glassy carbon electrode, leaching of ADH was observed as detected by UV-vis spectrophotometry. Ethanol sensing was also tested in the presence and absence of ascorbate to measure the selectivity of the sensor for ethanol. These two ethanol biosensors were compared to a previously reported one where the y -ADH and the NAD+ were in solution, not immobilized. [source]


ChemInform Abstract: Structural Investigation of Eu2+ Emissions from Alkaline Earth Zirconium Phosphate.

CHEMINFORM, Issue 27 2009
Masaaki Hirayama
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Effect of Enzyme and Cofactor Immobilization on the Response of Ethanol Oxidation in Zirconium Phosphate Modified Biosensors

ELECTROANALYSIS, Issue 10 2010
Mitk'El
Abstract Two different self-contained ethanol amperometric biosensors incorporating layered [Ru(phend)2bpy]2+ -intercalated zirconium phosphate (ZrP) as the mediator as well as yeast -alcohol dehydrogenase (y- ADH) and its cofactor nicotinamide adenine dinucleotide (NAD+) were constructed to improve upon a design previously reported where only this mediator was immobilized in the surface of a modified electrode. In the first biosensor, a [Ru(phend)2bpy]2+ -intercalated ZrP modified carbon paste electrode (CPE) was improved by immobilizing in its surface both y- ADH and NAD+ using quaternized Nafion membrane. In the second biosensor, a glassy carbon electrode was modified with [Ru(phend)2bpy]2+ -intercalated ZrP, y- ADH, and NAD+ using Nafion as the holding matrix. Calibration plots for ethanol sensing were constructed in the presence and absence of ZrP. In the absence of ZrP in the surface of the modified glassy carbon electrode, leaching of ADH was observed as detected by UV-vis spectrophotometry. Ethanol sensing was also tested in the presence and absence of ascorbate to measure the selectivity of the sensor for ethanol. These two ethanol biosensors were compared to a previously reported one where the y -ADH and the NAD+ were in solution, not immobilized. [source]


Conductivity and Methanol Permeability of Nafion,Zirconium Phosphate Composite Membranes Containing High Aspect Ratio Filler Particles,

FUEL CELLS, Issue 4 2009
M. Casciola
Abstract Gels of exfoliated ,-zirconium phosphate (ZrPexf) in dimethylformamide (DMF) were used to prepare Nafion/ZrPexf composite membranes with filler loadings up to 7,wt.-% by casting mixtures of Nafion 1100 solutions in DMF and suitable amounts of 2,wt.-% ZrP gels in DMF. TEM pictures showed that the ZrPexf particles had aspect ratio of at least 20. All samples were characterised by methanol permeability (P) and through-plane (,thp) and in-plane (,inp) conductivity measurements at 40,°C and 100% RH. The methanol permeability of Nafion membranes containing in situ grown ZrP particles with low aspect ratio (Nafion/ZrPisg) was also determined. The methanol permeability and the swelling behaviour of the composite membranes turned out to be strongly dependent on the filler morphology. As a general trend, both permeability and swelling decreased according to the sequence: Nafion/ZrPisg > Nafion > Nafion/ZrPexf. The maximum selectivity (,thp/P,=,1.4,×,105,S,cm,3,s) was found for the membrane filled with 1,wt.-% ZrPexf: this value is seven times higher than that of Nafion. For the Nafion/ZrPexf membranes, the ratio ,inp/,thp increases with the filler loading, thus indicating that the preferred orientation of the ZrP sheets is parallel to the membrane surface. [source]


Prediction of hemodialysis sorbent cartridge urea nitrogen capacity and sodium release from in vitro tests

HEMODIALYSIS INTERNATIONAL, Issue 2 2008
Benjamin P. ROSENBAUM
Abstract In sorbent-based hemodialysis, factors limiting a treatment session are urea conversion capacity and sodium release from the cartridge. In vitro experiments were performed to model typical treatment scenarios using various dialyzers and 4 types of SORBÔ sorbent cartridges. The experiments were continued to the point of column saturation with ammonium. The urea nitrogen removed and amount of sodium released in each trial were analyzed in a multi-variable regression against several variables: amount of zirconium phosphate (ZrP), dialysate flow rate (DFR), simulated blood flow rate (BFR), simulated patient whole-body fluid volume (V), initial simulated patient urea concentration (BUNi), dialyzer area permeability (KoA) product, initial dialysate sodium and bicarbonate (HCO3i) concentrations, initial simulated patient sodium (Nai), pH of ZrP, creatinine, breakthrough time, and average urea nitrogen concentration in dialysate. The urea nitrogen capacity (UNC) of various new SORBÔ columns is positively related to ZrP, BFR, V, BUNi, and ZrP pH and negatively to DFR with an R2adjusted=0.990. Two models are described for sodium release. The first model is related positively to DFR and V and negatively to ZrP, KoA product, and dialysate HCO3i with an R2adjusted=0.584. The second model incorporates knowledge of initial simulated patient sodium (negative relationship) and urea levels (negative relationship) in addition to the parameters in the first model with an R2adjusted=0.786. These mathematical models should allow for prediction of patient sodium profiles and the time of column urea saturation based on simple inputs relating to patient chemistries and the dialysis treatment. [source]


Facile route for the synthesis of benzothiazoles and benzimidazoles in the presence of tungstophosphoric acid impregnated zirconium phosphate under solvent-free conditions

HETEROATOM CHEMISTRY, Issue 4 2009
Hamid Aliyan
Rapid and efficient condensation reactions of o -phenylenediamine and o -aminothiophenol with various aldehydes were carried out using tungstophosphoric acid impregnated zirconium phosphate in solvent-free conditions to afford the corresponding 2-substituted arylbenzimidazole and arylbenzothiazole derivatives in good to excellent yields. This procedure constitutes a simple and practical green synthetic method for 2-arylbenzimidazoles and 2-arylbenzothiazoles and their structural analogs. Furthermore, the catalyst can be reused for several times but it will be less active. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:202,207, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20534 [source]