Home About us Contact | |||
Zeolite L (zeolite + l)
Terms modified by Zeolite L Selected AbstractsElectronic and Vibrational Properties of Fluorenone in the Channels of Zeolite LCHEMISTRY - A EUROPEAN JOURNAL, Issue 10 2004André Devaux Dr. Abstract Fluorenone (C13H8O) was inserted into the channels of zeolite L by using gas-phase adsorption. The size, structure, and stability of fluorenone are well suited for studying host,guest interactions. The Fourier transform IR, Raman, luminescence, and excitation spectra, in addition to thermal analysis data, of fluorenone in solution and fluorenone/zeolite L are reported. Normal coordinate analysis of fluorenone was performed, based on which IR and Raman bands were assigned, and an experimental force field was determined. The vibrational spectra can be used for nondestructive quantitative analysis by comparing a characteristic dye band with a zeolite band that has been chosen as the internal standard. Molecular orbital calculations were performed to gain a better understanding of the electronic structure of the system and to support the interpretation of the electronic absorption and luminescence spectra. Fluorenone shows unusual luminescence behavior in that it emits from two states. The relative intensity of these two bands depends strongly on the environment and changes unexpectedly in response to temperature. In fluorenone/zeolite L, the intensity of the 300 nm band (lifetime 9 ,s) increases with decreasing temperature, while the opposite is true for the 400 nm band (lifetime 115 ,s). A model of the host,guest interaction is derived from the experimental results and calculations: the dye molecule sits close to the channel walls with the carbonyl group pointing to an Al3+ site of the zeolite framework. A secondary interaction was observed between the fluorenone's aromatic ring and the zeolite's charge-compensating cations. [source] Synthesis and morphology of nanosized zeolite LCRYSTAL RESEARCH AND TECHNOLOGY, Issue 2 2010S. Sadegh Hassani Abstract AFM is a powerful tool for imaging nanoscale surface features; it provides two and three dimensional crystal structure images and other information about actual surface of zeolite crystallites. In this paper, nanosized zeolite L is synthesized in different crystallization times and a study of crystal growth of zeolite L is reported using atomic force microscopy (AFM). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques are used for characterization of the as synthesized samples. TEM and two-dimensional AFM images indicate that the zeolite particles are in a nano-range and they have hexagonal structure. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Cell Adhesion and Cellular Patterning on a Self-Assembled Monolayer of Zeolite L CrystalsADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Nermin Seda Kehr Abstract Chemically functionalized self-assembled monolayers made by disk-shaped zeolite L nanocrystals are used as models for biocompatible surfaces to study cell-adhesion behavior. Different chemical groups lead to different cellular behavior and fluorescent-molecule-loaded zeolites allow the position of the cells to be determined. Furthermore, a patterned monolayer of asymmetrically functionalized zeolite L obtained by microcontact chemistry is used to grow cells. A spatial recognition of the cells, which proliferate only on the bioactive-molecule-functionalized stripes, is possible. [source] Orthogonally Bifunctional Fluorescent Zeolite-L Microcrystals,,ADVANCED MATERIALS, Issue 9 2008Michael Busby Microcrystals of zeolite L are functionalized with two different fluorescent dyes in a spatially resolved manner. The multiple functionalities and the selective derivatization of the channel entrances and of the coat of the zeolites result in interesting photophysical behavior as well as potential uses. The concept shown for the dyes can in principle be applied to any type of molecule. [source] Electronic and Vibrational Properties of Fluorenone in the Channels of Zeolite LCHEMISTRY - A EUROPEAN JOURNAL, Issue 10 2004André Devaux Dr. Abstract Fluorenone (C13H8O) was inserted into the channels of zeolite L by using gas-phase adsorption. The size, structure, and stability of fluorenone are well suited for studying host,guest interactions. The Fourier transform IR, Raman, luminescence, and excitation spectra, in addition to thermal analysis data, of fluorenone in solution and fluorenone/zeolite L are reported. Normal coordinate analysis of fluorenone was performed, based on which IR and Raman bands were assigned, and an experimental force field was determined. The vibrational spectra can be used for nondestructive quantitative analysis by comparing a characteristic dye band with a zeolite band that has been chosen as the internal standard. Molecular orbital calculations were performed to gain a better understanding of the electronic structure of the system and to support the interpretation of the electronic absorption and luminescence spectra. Fluorenone shows unusual luminescence behavior in that it emits from two states. The relative intensity of these two bands depends strongly on the environment and changes unexpectedly in response to temperature. In fluorenone/zeolite L, the intensity of the 300 nm band (lifetime 9 ,s) increases with decreasing temperature, while the opposite is true for the 400 nm band (lifetime 115 ,s). A model of the host,guest interaction is derived from the experimental results and calculations: the dye molecule sits close to the channel walls with the carbonyl group pointing to an Al3+ site of the zeolite framework. A secondary interaction was observed between the fluorenone's aromatic ring and the zeolite's charge-compensating cations. [source] |