Zebrafish Retina (zebrafish + retina)

Distribution by Scientific Domains


Selected Abstracts


The Presence of Megamitochondria in the Ellipsoid of Photoreceptor Inner Segment of the Zebrafish Retina

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2005
J. Kim
Summary Although the megamitochondria (MM) were localized in various pathological conditions, normal retina of some mammalian species was reported to include MM for various physiological roles. However, it was not clearly confirmed whether the MM is present in the retina of lower vertebrate as well. In this study, we tried to show the presence of the MM in the zebrafish retina using electron microscopic technique. In all the photoreceptors including rods, cones and double cones of the zebrafish retina, MM were observed in the ellipsoid of inner segment. In the photoreceptor epllipsoid of the zebrafish retina, the mitochondria located in the central portion of the ellipsoid had a highly electron-dense matrix, which were accompanied by the mitochondria with electron-lucent matrix in the apical portion of the ellipsoid. The presence of MM was more clearly discernable in the rods, which were localized under the double cones. This finding is somewhat different from those observed in the previous studies because MM were localized in the inner segment of cones, but were not in those of rods in the case of mammalian retina. Although the exact physiological meaning for the presence of MM in some vertebrate species should be further studied, the present study could show that the MM in the ellipsoid of the retinal photoreceptors was not only restricted in some mammalian species. [source]


Retina development in zebrafish requires the heparan sulfate proteoglycan agrin

DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2008
I-Hsuan Liu
Abstract Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


Genetic dissection reveals two separate pathways for rod and cone regeneration in the teleost retina

DEVELOPMENTAL NEUROBIOLOGY, Issue 5 2008
Ann C. Morris
Abstract Development of therapies to treat visual system dystrophies resulting from the degeneration of rod and cone photoreceptors may directly benefit from studies of animal models, such as the zebrafish, that display continuous retinal neurogenesis and the capacity for injury-induced regeneration. Previous studies of retinal regeneration in fish have been conducted on adult animals and have relied on methods that cause acute damage to both rods and cones, as well as other retinal cell types. We report here the use of a genetic approach to study progenitor cell responses to photoreceptor degeneration in the larval and adult zebrafish retina. We have compared the responses to selective rod or cone degeneration using, respectively, the XOPS-mCFP transgenic line and zebrafish with a null mutation in the pde6c gene. Notably, rod degeneration induces increased proliferation of progenitors in the outer nuclear layer (ONL) and is not associated with proliferation or reactive gliosis in the inner nuclear layer (INL). Molecular characterization of the rod progenitor cells demonstrated that they are committed to the rod photoreceptor fate while they are still mitotic. In contrast, cone degeneration induces both Müller cell proliferation and reactive gliosis, with little change in proliferation in the ONL. We found that in both lines, proliferative responses to photoreceptor degeneration can be observed as 7 days post fertilization (dpf). These two genetic models therefore offer new opportunities for investigating the molecular mechanisms of selective degeneration and regeneration of rods and cones. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003
Oliver Biehlmaier
Abstract Previous studies have analyzed photoreceptor development, some inner retina cell types, and specific neurotransmitters in the zebrafish retina. However, only minor attention has been paid to the morphology of the synaptic connection between photoreceptors and second order neurons even though it represents the transition from the light sensitive receptor to the neuronal network of the visual system. Here, we describe the appearance and differentiation of pre- and postsynaptic elements at cone synapses in the developing zebrafish retina together with the maturation of the directly connecting second order neurons and a dopaminergic third order feedback-neuron from the inner retina. Zebrafish larvae were examined at developmental stages from 2 to 7dpf (days postfertilization) and in the adult. Synaptic maturation at the photoreceptor terminals was examined with antibodies against synapse associated proteins. The appearance of synaptic plasticity at the so-called spinule-type synapses between cones and horizontal cells was assessed by electron microscopy, and the maturation of photoreceptor downstream connection was identified by immunocytochemistry for GluR4 (AMPA-type glutamate receptor subunit), protein kinase ,1 (mixed rod-cone bipolar cells), and tyrosine hydroxylase (dopaminergic interplexiform cells). We found that developing zebrafish retinas possess first synaptic structures at the cone terminal as early as 3.5dpf. Morphological maturation of these synapses at 3.5,4dpf, together with the presence of synapse associated proteins at 2.5dpf and the maturation of second order neurons by 5dpf, indicate functional synaptic connectivity and plasticity between the cones and their second order neurons already at 5dpf. However, the mere number of spinules and ribbons at 7dpf still remains below the adult values, indicating that synaptic functionality of the zebrafish retina is not entirely completed at this stage of development. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 222,236, 2003 [source]


Evidence for RPE65-independent vision in the cone-dominated zebrafish retina

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007
Helia B. Schonthaler
Abstract An enzyme-based cyclic pathway for trans to cis isomerization of the chromophore of visual pigments (11- cis -retinal) is intrinsic to vertebrate cone and rod vision. This process, called the visual cycle, is mostly characterized in rod-dominated retinas and essentially depends on RPE65, an all- trans to 11- cis -retinoid isomerase. Here we analysed the role of RPE65 in zebrafish, a species with a cone-dominated retina. We cloned zebrafish RPE65 and showed that its expression coincided with photoreceptor development. Targeted gene knockdown of RPE65 resulted in morphologically altered rod outer segments and overall reduced 11- cis -retinal levels. Cone vision of RPE65-deficient larvae remained functional as demonstrated by behavioural tests and by metabolite profiling for retinoids. Furthermore, all- trans retinylamine, a potent inhibitor of the rod visual cycle, reduced 11- cis -retinal levels of control larvae to a similar extent but showed no additive effects in RPE65-deficient larvae. Thus, our study of zebrafish provides in vivo evidence for the existence of an RPE65-independent pathway for the regeneration of 11- cis -retinal for cone vision. [source]


Cellular patterns in the inner retina of adult zebrafish: Quantitative analyses and a computational model of their formation

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2004
David A. Cameron
Abstract The mechanisms that control cellular pattern formation in the growing vertebrate central nervous system are poorly understood. In an effort to reveal mechanistic rules of cellular pattern formation in the central nervous system, quantitative spatial analysis and computational modeling techniques were applied to cellular patterns in the inner retina of the adult zebrafish. All the analyzed cell types were arrayed in nonrandom patterns tending toward regularity; specifically, they were locally anticlustered. Over relatively large spatial scales, only one cell type exhibited consistent evidence for pattern regularity, suggesting that cellular pattern formation in the inner retina is dominated by local anticlustering mechanisms. Cross-correlation analyses revealed independence between the patterns of different cell types, suggesting that cellular pattern formation may involve multiple, independent, homotypic anticlustering mechanisms. A computational model of cellular pattern formation in the growing zebrafish retina was developed, which featured an inhibitory, homotypic signaling mechanism, arising from differentiated cells, that controlled the spatial profile of cell fate decisions. By adjusting the spatial profile of this decaying-exponential signal, the model provided good estimates of all the cellular patterns that were observed in vivo, as objectively judged by quantitative spatial pattern analyses. The results support the hypothesis that cellular pattern formation in the inner retina of zebrafish is dominated by a set of anticlustering mechanisms that may control events at, or near, the spatiotemporal point of cell fate decision. J. Comp. Neurol. 471:11,25, 2004. © 2004 Wiley-Liss, Inc. [source]


The Presence of Megamitochondria in the Ellipsoid of Photoreceptor Inner Segment of the Zebrafish Retina

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2005
J. Kim
Summary Although the megamitochondria (MM) were localized in various pathological conditions, normal retina of some mammalian species was reported to include MM for various physiological roles. However, it was not clearly confirmed whether the MM is present in the retina of lower vertebrate as well. In this study, we tried to show the presence of the MM in the zebrafish retina using electron microscopic technique. In all the photoreceptors including rods, cones and double cones of the zebrafish retina, MM were observed in the ellipsoid of inner segment. In the photoreceptor epllipsoid of the zebrafish retina, the mitochondria located in the central portion of the ellipsoid had a highly electron-dense matrix, which were accompanied by the mitochondria with electron-lucent matrix in the apical portion of the ellipsoid. The presence of MM was more clearly discernable in the rods, which were localized under the double cones. This finding is somewhat different from those observed in the previous studies because MM were localized in the inner segment of cones, but were not in those of rods in the case of mammalian retina. Although the exact physiological meaning for the presence of MM in some vertebrate species should be further studied, the present study could show that the MM in the ellipsoid of the retinal photoreceptors was not only restricted in some mammalian species. [source]


Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003
Oliver Biehlmaier
Abstract Previous studies have analyzed photoreceptor development, some inner retina cell types, and specific neurotransmitters in the zebrafish retina. However, only minor attention has been paid to the morphology of the synaptic connection between photoreceptors and second order neurons even though it represents the transition from the light sensitive receptor to the neuronal network of the visual system. Here, we describe the appearance and differentiation of pre- and postsynaptic elements at cone synapses in the developing zebrafish retina together with the maturation of the directly connecting second order neurons and a dopaminergic third order feedback-neuron from the inner retina. Zebrafish larvae were examined at developmental stages from 2 to 7dpf (days postfertilization) and in the adult. Synaptic maturation at the photoreceptor terminals was examined with antibodies against synapse associated proteins. The appearance of synaptic plasticity at the so-called spinule-type synapses between cones and horizontal cells was assessed by electron microscopy, and the maturation of photoreceptor downstream connection was identified by immunocytochemistry for GluR4 (AMPA-type glutamate receptor subunit), protein kinase ,1 (mixed rod-cone bipolar cells), and tyrosine hydroxylase (dopaminergic interplexiform cells). We found that developing zebrafish retinas possess first synaptic structures at the cone terminal as early as 3.5dpf. Morphological maturation of these synapses at 3.5,4dpf, together with the presence of synapse associated proteins at 2.5dpf and the maturation of second order neurons by 5dpf, indicate functional synaptic connectivity and plasticity between the cones and their second order neurons already at 5dpf. However, the mere number of spinules and ribbons at 7dpf still remains below the adult values, indicating that synaptic functionality of the zebrafish retina is not entirely completed at this stage of development. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 222,236, 2003 [source]


Differential expression of voltage-activated calcium currents in zebrafish retinal ganglion cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2006
Luoxiu Huang
Abstract We report a study on the characterization of voltage-activated calcium currents (ICa) in retinal ganglion cells (RGCs) and the topographic distribution of RGCs that express different types of ICa in zebrafish retinas. In acutely isolated zebrafish RGCs, both high-voltage-activated (HVA; peak activation potential +7.4 ± 1.1 mV) and low-voltage-activated (LVA; peak activation potential ,33.0 ± 1.2 mV) ICa were recorded. HVA ICa were recorded in all of the tested RGCs, whereas LVA ICa were recorded in approximately one-third of the tested cells. In RGCs that expressed both HVA and LVA ICa, the two currents were readily separated by depolarizing the cell membrane to different voltages from different holding potentials. Among RGCs that expressed LVA ICa, some cells expressed large LVA ICa (up to 130 pA), whereas others expressed small LVA ICa (approximately 20 pA). RGCs that expressed large and small LVA ICa were designated as class I and class II cells, respectively, and RGCs that expressed only HVA ICa were designated as class III cells. The topographic distribution of cell classes was similar in various areas of the retina. In the nasal-ventral retina, for example, class III cells outnumbered class I and class II cells by 10.8- and 2.6-fold, respectively. In the temporal and dorsal retinas, the density of class III cells slightly decreased, whereas the density of class I and class II cells increased. The differential expression of ICa in RGCs may correlate with the development and function of the retina. © 2006 Wiley-Liss, Inc. [source]