Home About us Contact | |||
Zagros Mountains (Zagro + mountain)
Selected AbstractsCarnivores and their prey in the Wezmeh Cave (Kermanshah, Iran): a Late Pleistocene refuge in the ZagrosINTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 6 2009M. Mashkour Abstract Wezmeh Cave is located on the northeastern edge of the Islamabad plain, a high intermontane valley in the western-central Zagros. In 1999 a disturbed but large faunal assemblage was recovered from this site. The abundant and extremely diverse faunal spectra present at Wezmeh Cave has highlighted the importance of this assemblage. Carnivore remains constitute the bulk of the assemblage; red fox (Vulpes vulpes) has the highest number of identified specimens followed by spotted hyena (Crocuta crocuta), brown bear (Ursus arctos), wolf (Canis lupus), felids (lion, leopard, lynx/caracal and wildcat), mustelids (badger, polecat, marten) and viverrids (mongoose). Artiodactyls (bovid, cervid, suid), equids, rhinoceros (Dicerorhinus sp.) and small animals (Cape hare, porcupine, tortoise, snake, birds) are also present. According to U-series dating, the site was occupied from around 70 ka BP through to sub-recent periods by carnivores. Amongst this rich assemblage, a human fossil tooth was also found and dated by non-invasive spectrometry gamma dating to 20,25 ka BP. A preliminary zooarchaeological and taphonomic study shows that Wezmeh Cave was used by multiple carnivore species, a unique phenomenon in the Zagros Mountains in particular and southwest Asia in general. Copyright © 2008 John Wiley & Sons, Ltd. [source] Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission-track analysis: evidence for a long-lived orogenyBASIN RESEARCH, Issue 5 2010Stéphane Homke ABSTRACT We present the first fission-track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene,early Eocene Amiran,Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj-Sirjan Zone. Only apatite fission-track (AFT) data have been successfully obtained, including 26 ages and 11 track-length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre-middle Jurassic at ,171 and ,225 Ma, early,late Cretaceous at ,91 Ma, Maastrichtian at ,66 Ma, middle,late Eocene at ,38 Ma and Oligocene,early Miocene at ,22 Ma. The most widespread middle,late Eocene cooling phase, around ,38 Ma, is documented by a predominant grain-age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle,late Eocene phase mostly produced a long-lasting slow- or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj-Sirjan domain and its Gaveh Rud fore-arc basin. As evidenced in this study, the Zagros orogeny was long-lived and multi-episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation. [source] Fold evolution and drainage development in the Zagros mountains of Fars province, SE IranBASIN RESEARCH, Issue 1 2008Lucy A. Ramsey ABSTRACT A central question in structural geology is whether, and by what mechanism, active faults (and the folds often associated with them) grow in length as they accumulate displacement. An obstacle in our understanding of these processes is the lack of examples in which the lateral growth of active structures can be demonstrated definitively, as geomorphic indicators of lateral propagation are often difficult, or even impossible to distinguish from the effects of varying lithology or non-uniform displacement and slip histories. In this paper we examine, using the Zagros mountains of southern Iran as our example, the extent to which qualitative analysis of satellite imagery and digital topography can yield insight into the growth, lateral propagation, and interaction of individual fold segments in regions of active continental shortening. The Zagros fold-and-thrust belt contains spectacular whaleback anticlines that are well exposed in resistant Tertiary and Mesozoic limestone, are often >100 km in length, and which contain a large proportion of the global hydrocarbon reserves. In one example, Kuh-e Handun, where an anticline is mantled by soft Miocene sediments, direct evidence of lateral fold propagation is recorded in remnants of consequent drainage patterns on the fold flanks that do not correspond to the present-day topography. We suggest that in most other cases, the soft Miocene and Pliocene sediments that originally mantled the folds, and which would have recorded early stages in the growth histories, have been completely stripped away, thus removing any direct geomorphic evidence of lateral propagation. However, many of the long fold chains of the Zagros do appear to be formed from numerous segments that have coalesced. If our interpretations are correct, the merger of individual fold segments that have grown in length is a major control on the development of through-going drainage and sedimentation patterns in the Zagros, and may be an important process in other regions of crustal shortening as well. Abundant earthquakes in the Zagros show that large seismogenic thrust faults must be present at depth, but these faults rarely reach the Earth's surface, and their relationship to the surface folding is not well constrained. The individual fold segments that we identify are typically 20,40 km in length, which correlates well with the maximum length of the seismogenic basement faults suggested from the largest observed thrusting earthquakes. This correlation between the lengths of individual fold segments and the lengths of seismogenic faults at depth suggest that it is possible, at least in some cases, that there may be a direct relationship between folding and faulting in the Zagros, with individual fold segments underlain by discrete thrusts. [source] |