Home About us Contact | |||
Z
Kinds of Z Terms modified by Z Selected AbstractsDevelopment and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR imagesCONTRAST MEDIA & MOLECULAR IMAGING, Issue 4 2008J. Stancanello Abstract Chemical exchange saturation transfer (CEST) imaging is an emerging MRI technique relying on the use of endogenous or exogenous molecules containing exchangeable proton pools. The heterogeneity of the water resonance frequency offset plays a key role in the occurrence of artifacts in CEST-MR images. To limit this drawback, a new smoothing-splines-based method for fitting and correcting Z -spectra in order to compensate for low signal-to-noise ratio (SNR) without any a priori model was developed. Global and local voxel-by-voxel Z -spectra were interpolated by smoothing splines with smoothing terms aimed at suppressing noise. Thus, a map of the water frequency offset (,zero' map) was used to correctly calculate the saturation transfer (ST) for each voxel. Simulations were performed to compare the method to polynomials and zero-only-corrected splines on the basis of SNR improvement. In vitro acquisitions of capillaries containing solutions of LIPOCEST agents at different concentrations were performed to experimentally validate the results from simulations. Additionally, ex vivo investigations of bovine muscle mass injected with LIPOCEST agents were performed as a function of increasing pulse power. The results from simulations and experiments highlighted the importance of a proper ,zero' correction (15% decrease of fictitious CEST signal in phantoms and ex vivo preparations) and proved the method to be more accurate compared with the previously published ones, often providing a SNR higher than 5 in different simulated and experimentally noisy conditions. In conclusion, the proposed method offers an accurate tool in CEST investigation. Copyright © 2008 John Wiley & Sons, Ltd. [source] Presheath in Fully Ionized Collisional Plasma in a Magnetic FieldCONTRIBUTIONS TO PLASMA PHYSICS, Issue 7 2005B. Alterkop Abstract The quasineutral presheath layer at the boundary of fully ionized, collisional, and magnetized plasma with an ambipolar flow to an adjacent absorbing wall was analyzed using a two fluid magneto-hydrodynamic model. The plasma is magnetized by a uniform magnetic field B, imposed parallel to the wall. The analysis did not assume that the dependence of the particle density on the electric potential in the presheath is according to the Boltzmann equilibrium, and the dependence of the mean collision time , on the varying plasma density within the presheath was not neglected. Based on the model equations, algebraic expressions were derived for the dependence of the plasma density, electron and ion velocities, and the electrostatic potential on the position within the presheath. The solutions of the model equations depended on two parameters: Hall parameter (, ), and the ratio (, ), where , = ZTe /(ZTe + Ti ), and Te , Ti and Z are the electron and ion temperatures and ionicity, respectively. The characteristic scale of the presheath extension is several times ri /, , where ri is the ion radius at the ion sound velocity. The electric potential could have a non monotonic distribution in the presheath. The ions are accelerated to the Bohm velocity (sound velocity) in the presheath mainly near the presheath-sheath boundary, in a layer of thickness ,ri /, . The electric field accelerates the ions in the whole presheath if their velocity in the wall direction exceeds their thermal velocity. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Powder second harmonic generation measurement and thermal decomposition mechanisms of a new organometallic compound [(18C6)Li][Cd(SCN)3]CRYSTAL RESEARCH AND TECHNOLOGY, Issue 9 2009J. J. Zhang Abstract Single crystals of a novel nonlinear optical organometallic compound CLTC, ([(18C6)Li][Cd(SCN)3]), were grown from aqueous solutions via evaporation technique and characterized by IR spectroscopy, thermal gravimetric analysis and X-ray single-crystal diffraction. By X-ray single-crystal structural analysis it is revealed that the compound crystallized in a noncentrosymmetric space group Cmc21 of orthorhombic system with cell parameter a = 14.767(3) Å, b = 15.454(3) Å, c = 10.644(2) Å, V = 2429.0(8) Å3 and Z = 4. The thermal stability and thermal decomposition of CLTC crystal were investigated by means of thermogravimetry and differential thermal analysis. The second harmonic generation (SHG) efficiency was measured using the Kurtz and Perry powder technique. It was shown that the value of the SHG efficiency of CLCT powder was about 2 times higher than that of potassium dihydrogen phosphate (KDP). (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal structure characterization of the quaternary compounds CuFeAlSe3 and CuFeGaSe3CRYSTAL RESEARCH AND TECHNOLOGY, Issue 5 2009G. E. Delgado Abstract The crystal structure of the chalcogenide compounds CuFeAlSe3 and CuFeGaSe3, belonging to the system I-II-III-III3, were characterized using X-ray powder diffraction data. Both compounds crystallize in the tetragonal space group P42c (N° 112), Z = 1, with unit cell parameters a = 5.609(1) Å, c = 10.963(2) Å for CuFeAlSe3 and a = 5.6165(3) Å, c = 11.075(1) Å for CuFeGaSe3. These compounds are isostructural with CuFeInSe3, and have a normal adamantane structure. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Structural study of the semimagnetic semiconductor Zn0.5Mn0.5In2Te4CRYSTAL RESEARCH AND TECHNOLOGY, Issue 2 2009G. E. Delgado Abstract The semimagnetic semiconductor alloy Zn0.5Mn0.5In2Te4 was refined from an X-ray powder diffraction pattern using the Rietveld method. This compound crystallizes in the space group I42m (Nº 121), Z = 2, with unit cell parameters a = 6.1738(1) Å, c = 12.3572(4) Å, V = 471.00(2) Å3, c/a = 2.00. This material crystallizes in a stannite-type structure. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Imidazolium based ionic liquid crystals: structure, photophysical and thermal behaviour of [Cnmim]Br·xH2O (n = 12, 14; x=0, 1)CRYSTAL RESEARCH AND TECHNOLOGY, Issue 11 2008A. Getsis Abstract The long chain imidazolium halides [Cnmim]Br·xH2O (n = 10, 12; x = 0, 1) have been synthesized and their structural and thermal behaviour together with their photophysical properties characterized. X-ray structure analyses of the monohydrates ([C12mim]Br·H2O: triclinic, P1, no. 2, Z = 2, Pearson code aP112, a = 550.0(5) pm, b = 779.4(5) pm, c = 2296.1(5) pm, , = 81.89(5)°, , = 83.76(5)°, , = 78.102(5)°, 3523 unique reflections with Io > 2,(Io), R1 = 0.0263, wR2 = 0.0652, GooF = 1.037, T = 263(2) K; [C14mim]Br,H2O: triclinic, P1, no. 2, Z = 12, Pearson code aP11, a = 549.86(8) pm, 782.09(13) pm, c = 2511.3(4) pm, , = 94.86(2)°, , = 94.39(2)°, , = 101.83(2)°, 2063 unique reflections with Io > 2,(Io), R1 = 0.0429, wR2 = 0.0690, GooF = 0.770, T = 293(2) K) show for both compounds similar bilayered structures. Sheets composed of hydrophilic structure regions constituted by positively charged imidazolium head groups, bromide anions and hydrogen bonded water alternate with hydrophobic areas formed by interdigitated long alkyl chains belonging to imidazolium cations with different orientation. Combined differential scanning calorimetry and polarizing optical microscopy shows that the monohydrates as well as the anhydrous imidazolium salts are thermotropic liquid crystals which adopt smectic mesophases. The mesophase region is larger in case of the monohydrates when compared to the anhydrous compounds indicating that water obviously stabilizes the mesophase. All compounds show an intense whitish photoluminescence with short lived (1,,1,*) and long lived (1,,3,*) transitions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis, crystal structure and vibrational characterization of bis-,-peroxo-hexacarbonatodicerate(IV) complexes of rubidium and cesiumCRYSTAL RESEARCH AND TECHNOLOGY, Issue 11 2008N.-P. Pook Abstract The new compounds Rb8[Ce(O2)(CO3)3]2 · 12 H2O (1) and Cs8[Ce(O2)(CO3)3]2 · 10 H2O (2) were obtained from the reaction of hydrogen peroxide and Ce(III) in saturated alkali carbonate solutions. The crystal structures and the unit cell parameters of (1) triclinic, P-1 with a = 8.973(2) Å, b = 10.815(2) Å, c = 11.130(3) Å, , = 66.992(2)°, , = 68.337(2)°, , = 74.639(2)°, VEZ = 914.7(4) Å3, Z = 2, and (2) orthorhombic, Pbca, a = 19.3840(16) Å, b = 18.528(2) Å, c = 10.487(3) Å, VEZ = 3766.4(13) Å3, Z = 8, were determined. Both compounds contain the bis-µ-peroxo-hexacarbonatodicerate(IV)-ion, [(CO3)3Ce(O2)2Ce(CO3)3]8- . IR and Raman spectra were measured and discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Structural and spectroscopic study of Mg13.4(OH)6(HVO4)2(H0.2VO4)6CRYSTAL RESEARCH AND TECHNOLOGY, Issue 11 2008Abstract Single-crystals of the polar compound magnesium hydrogen vanadate(V), Mg13.4(OH)6(HVO4)2(H0.2VO4)6, were synthesized hydrothermally. It represents the first hydrogen vanadate(V) among inorganic compounds. Its structure was determined by single-crystal X-ray diffraction [space group P 63mc, a = 12.9096(2), c = 5.0755(1) Å, V = 732.55(2) ų, Z = 1]. The crystal structure of Mg13.4(OH)6(HVO4)2(H0.2VO4)6 consists of well separated, vacancy-interrupted chains of face sharing Mg2O6 octahedra, with short Mg2,Mg2 distances of 2.537(1) Å, embedded in a porous magnesium vanadate 3D framework having the topology of the zeolite cancrinite. All three hydrogen positions in the structure were confirmed by FTIR spectroscopy. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis, characterization and impedance spectroscopy of the new material [(CH3) (C6H5) 3P] 2CoBr4: a member of the A2BX4 familyCRYSTAL RESEARCH AND TECHNOLOGY, Issue 5 2008M. F. Mostafa Abstract The crystal structure of bis-(methyltriphenylphosphonium) tetrabromocobaltate (II), [(C19H18P)2 CoBr4] is determined: Mr = 933.203, monoclinic, P21, a = 9. 6977 (3) Å, b = 12.5547 (4)Å, c = 16.4503 (6)Å, , = 105.603 (2)°, V = 1929.04 (11)Å3, Z = 2, Dx = 1.607 Mg m -3, T = 298 K. Differential thermal analysis at high temperatures shows three endothermic peaks characterizing four phases, with onset temperatures at T1= 313±2 K, T2 = 320±4 K and T3= 360±1 K. The structural instability detected via the temperature dependence of permittivity at T1 is ascribed to order-disorder transition associated with cation dipole reorientation. Permittivity and ac conductivity studies as a function of temperature (295 K-375 K) and frequency (0.11 kHz < f <100 kHz) are presented. The results indicate the importance of the cation size and shape on the phase transitions in the system. Bulk conductivity behavior is thermally activated. The associated activation energies are in the range 2.9 to 1.0 eV depending on the temperature regime. Two contributions to the ac conductivity, one dominating at low temperatures and high frequencies which are characterized by superlinear frequency exponent and the second dominates at high temperatures characterized by a sublinear frequency exponent. The behavior is interpreted in terms of the jump relaxation model. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal structure refinement of the ternary compound Cu2SnTe3 by X-ray powder diffractionCRYSTAL RESEARCH AND TECHNOLOGY, Issue 4 2008G. E. Delgado Abstract The ternary compound Cu2SnTe3 crystallizes in the Imm2 (Nº 44) space group, Z = 2, with a = 12.833(4) Å, b = 4.274(1) Å, c = 6.043(1) Å, V = 331.5(1) Å3. Its structure was refined from X-ray powder diffraction data using the Rietveld method. The refinement of 25 instrumental and structural variables led to Rp = 10.2%, Rwp = 11.8%, Rexp = 7.7%, RB = 10.6%, S = 1.6 and ,2 = 2.6, for 5501 step intensities and 163 independent reflections. This compound is isostructural with Cu2GeSe3, and consists of a three-dimensional arrangement of slightly distorted CuTe4 and SnTe4 tetrahedra connected by common corners. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis and crystal structure investigation of pyridine-2-(3,-mercaptopropanoic acid)- N -oxideCRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2007R. Ramasubramanian Abstract Pyridine-2-(3,-mercaptopropanoic acid)- N -oxide (I), is a higher homologue of 1-oxopyridinium-2-thioacetic acid (II) [1]. It crystallizes in monoclinic space group P21 with a = 9.2168(2) Å, b = 4.1423(2) Å, c = 11.3904(4) Å, , = 98.65(2)°, V = 429.93(3) Å3 and Z = 2. The least-squares refinement gave residual index R = 0.024 for 1070 observed reflections. The introduction of an additional methylene group in (II) causes a flip in the carboxylic acid group of (I) that facilitates the molecules to align infinite antiparallel chains through strong C,H···O interactions. The molecules are interlinked by O,H···O hydrogen bonding across the chains and forming an infinite screw chain along y-direction. The molecular packing is stabilized by O,H···O and C,H···O hydrogen bonding and ,-, electron interactions. This is an important facet of the crystal packing. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal structure of a polar nematogen 4-(trans- 4-undecylcyclohexyl) isothiocyanatobenzeneCRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2007S. Biswas Abstract Crystal and molecular structures of a nematogenic compound 4-(trans- 4-undecylcyclohexyl) isothiocyanatobenzene (11CHBT) have been determined by direct methods using single crystal X-ray diffraction data. The compound (C24H37N1S1) crystallizes in the monoclinic system with the space group P21/c and Z = 4. The unit cell parameters are a = 5.5539(11) Å, b = 8.1341(10) Å, c = 51.494(5) Å, and (= 91.127(14)0. The structure was refined to Rw = 0.051. The molecule is found to be slightly bow-shaped though the alkyl chain is in all- trans conformation. The phenyl ring and the alkyl chain are planar and the cyclohexyl group is in chair conformation. The isothiocyanato groups are almost linear. Parallel imbricated mode of packing of the molecules is found in the crystalline state which is precursor to the nematic phase structure. There are many van der Waals' interactions particularly in the isothiocyanato benzene part of the molecule. Of the various associated pairs of molecules the one having anti-parallel configuration with overlaps in the isothiocyanato phenyl group probably exists in both the crystalline and the nematic phases. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis and crystal structure of a new inorganic , organic complex: (4-ClC7H6NH3)9[Nd(P6O18)2]·9H2OCRYSTAL RESEARCH AND TECHNOLOGY, Issue 9 2007O. Amri Abstract Single crystals of (4-ClC7H6NH3)9[Nd(P6O18)2]·9H2O were synthesized in aqueous solution. This compound crystallizes in a triclinic P1 unit-cell, with a = 14.898(6), b = 18.049(7), c = 20.695(6)Å, , = 102.04(3), , = 100.49(3), , = 98.82(3)°, V = 5245(4) Å3 and Z = 2. The crystal structure has been solved and refined to R = 0.043 (Rw = 0.061) for 20420 observed reflections. The atomic arrangement of the title compound can be described as infinite layers built by complex of Neodyme [Nd(P6O18)2] and nine water molecules. The organic cations are located in the space delimited by the successive inorganic layers. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Hydrogen bonding of modified bases involving Watson-Crick sites: Crystal structure and conformation of Benzyl 6-aminopurine-7-carboxylateCRYSTAL RESEARCH AND TECHNOLOGY, Issue 7 2006J. M. Ohrt Abstract Crystals of benzyl 6-aminopurine-7-carboxylate (C13H11N5O2) are monoclinic, space group C2/c, Z = 8, with a = 25.448 (9), b = 6.052 (1), c = 16.975 (6)Å, , = 112.05 (5)°, M = 269.27, Dm= 1.49, Dx= 1.48 g/cm3. The structure was determined from three-dimensional diffractometric data by the multisolution technique and refined to a final reliability factor of 0.068. The molecule is planar with an intramolecular hydrogen bond from one of the amino hydrogens, Ha(N6) to the keto oxygen O(10) of the acyl group. The molecules are hydrogen bonded across the center of inversion by a pair of intermolecular hydrogen bonds using the Watson-Crick sites. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Rh(I) and Pd(II) complexes of methoxy functionalized heterocyclic carbene: Synthesis and characterizationCRYSTAL RESEARCH AND TECHNOLOGY, Issue 6 2006M. E. Günay Abstract A new methoxy functionalized 2-(trichloromethyl)-1,3-diarylimidazolidin (6) was synthesized as the precursor for N-heterocyclic carbene complexes of Pd(II) and Rh(I) by the condensation of N,N'-bis(2,4-dimethoxyphenyl)-1,2-diaminoethane with chloral. The structures of all compounds have been elucidated by a combination of multinuclear NMR spectroscopy, elemental analysis and in one instance, by single crystal X-ray diffraction. Compound 8, C27H34N2O4ClRh, crystallizes in the triclinic space group P-1 with cell dimensions a = 9.7642(12)Å, b = 11.1914(11)Å, c = 13.0102(14)Å, , = 104.034(9)°, , = 106.658(9)°, , = 99.658(9)° with Z = 2. The molecular structure of 8 shows the geometry around the Rh metal to be a slightly distorted square planar. The crystal structure shows the formation of centrosymmetric dimers via intermolecular C-H...Cl hydrogen bonds. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal structure of 2-(2'-hydroxyphenyl)-6-tributylstannyl-4-(3H )-quinazolinone and 2-(2'-hydroxyphenyl)-6-iodo-4-(3H)-quinazolinoneCRYSTAL RESEARCH AND TECHNOLOGY, Issue 6 2006Ketai Wang Abstract The structures of the title compounds C26H37N2O2Sn (I) and C14H9IN2O2 (II) were determined by single-crystal X-ray diffraction technique. Compound I crystallizes in the triclinic space group P1 with a = 9.560(3) Å, b = 16.899(6) Å, c = 17.872(5) Å, , = 65.957(7)°, , = 83.603(5)°, , ( = 75.242(5)°, V = 2549.8(13) Å3, Z = 4, and D =1.374 g/cm3. The compound consists of a quinazolinone ring with phenol and tributylstannyl moieties. Compound II crystallizes in the monoclinic space group P21/c with a = 7.6454(12) Å, b = 5.9270(9) Å, c = 27.975(4) Å; , = 90°, , = 95.081(3)°, , = 90°, V = 1262.7(3) Å3, Z = 4, and D = 1.915 g/cm3. The compound consists of a quinazolinone ring with phenol and iodine substituents. For both I and II, the short intramolecular O,H,N and two long intermolecular N,H,O hydrogen bonds are highly effective in holding the molecular system in a stable state. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal structure of a ternary mononuclear copper (II) complex: 4-chloro-3-methyl-6[(N-2-picolyl)-1,-iminomethyl]phenolato copper(II)perchlorateCRYSTAL RESEARCH AND TECHNOLOGY, Issue 5 2006S. M. Malathy Sony Abstract The complex crystallizes in monoclinic space group P21/n with unit cell parameters a = 7.295(4), b = 19.627(5), c = 12.770(4) Å, , = 101.25(4)º, V = 1793.2(12) Å3, Z = 4, , = 1.684 Mg/m3 at T = 293(2)K. The structure was solved by Patterson method and refined by full-matrix least-squares procedures to final R = 0.0387 using 2906 observed reflections. The asymmetric unit of the complex contains a mononuclear tridentate ligand, a perchlorate group and a methanol molecule. The compound crystallizes as parallel layers of polymeric complex bridged through perchloarate groups. The molecular CuN2OO,O,,2 chromophore involves an elongated rhombic octahedral structure and the Cu-ligand bond shows greater disparity. The five-membered chelate ring and the pyridine ring lie in the same plane while the six membered chelate ring assumes sofa conformation. A strong O-H,O inter molecular interaction plays a key role in the formation of dimer along b-axis. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis and structure of a new one-dimensional cobalt complex with dicyanamide and 4-picolyl choride bridgesCRYSTAL RESEARCH AND TECHNOLOGY, Issue 4 2006Hongxia Pei Abstract The synthesis and structure of the 1D cobalt (II) complex, [Co(L)2(dca)2] (1) (dca = dicyanamide, C2N3,, L = 4-picolyl choride) is reported. Complex 1 crystallized in triclinic system, space group P -1, with cell dimensions of a = 7.291(2) Å, b = 7.481(2) Å, c = 9.007(3) Å, , =104.444(4)°, , = 96.971(4)°, , =102.618(4)°, V = 456.1(2) Å3, Z = 1, Dc = 1.624 Mg/m3. In complex 1, Co (II) is 6-coordinated by N atoms of four dca ligands and two L ligands. The centrosymmetric CoN6 chromophore is an axially elongated octahedron that has Co-N distances ranging from 2.122(3) to 2.154(3) Å. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal structure of 4-(1-methyl-1-mesitylcyclobutane-3-yl)-2-aminothiazoleCRYSTAL RESEARCH AND TECHNOLOGY, Issue 3 2006. Aksoy Abstract The crystal structure of 4-(1-methyl-1-mesitylcyclobutane-3-yl)-2-aminothiazole (C17H22N2S1) has been determined by X-ray crystallographic techniques. The compound crystallizes in the triclinic space group P-1 with Z = 6. The crystal structure was solved by direct methods and refined by full-matrix least squares to a final R-value of 0.052 for 2298 observed reflections [I > 2, ( I ) ]. There are three crystallographically independent molecules, I, II and III. These molecules are held together by intermolecular N-H...N hydrogen bonds. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [source] Crystal structure of a tetrazole derivativeCRYSTAL RESEARCH AND TECHNOLOGY, Issue 3 2006H. S. Yathirajan Abstract 5-(4'-Methyl-1,1'-biphenyl-2-yl)-1H-tetrazole(MBT), C28H24N8, CCDC: 223082, F.W.=472.55, triclinic, P1, a=4.99(1)Å, b=14.25(4)Å, c=16.63(5)Å, , = 90.27(5)°, , = 91.19(5)°, , = 90.64(5)°, V = 1182(6)Å3, Z = 4, Dcal = 1.327 Mgm -3, , = 0.084mm -1, F000 = 496, , (MoK,) = 0.71073Å, final R1 and wR2 are 0.0924 and 0.2309, respectively. There are two crystallographically independent molecules in the asymmetric unit. The dihedral angles between the two phenyl rings of the biphenyl ring system are 44.2(2)° and 44.3(2)° for the two molecules respectively. The molecules are stabilized by N-H,N and C-H,N types of intermolecular hydrogen bonds in the unit cell in addition to van der Waals forces. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [source] Synthesis and structural conformation of N-substituted 1,4-dihyropyridine derivativesCRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2006M. Mahendra Abstract N-(Phenyl)-3,5-dicarbethoxy-2,6-dimethyl-4-(phenyl)-1,4-dihydropyridine (A) and N-(4-methoxy phenyl)--3,5 dicarbethoxy-2,6 dimethyl-4-(3-nitro phenyl)-1,4-dihydropyridine (B) has been synthesized as per scheme and characterized by the X-ray diffraction method. The compound A crystallizes in monoclinic space group P21/c with cell parameters a = 9.2770(11)Å, b = 8.6410(5)Å, c = 27.601(3)Å, , = 97.724(3)°, Z = 4. The compound B crystallizes in monoclinic space group P21/c with cell parameters a = 11.229(6), b = 12.746(7)Å, c =17.606(6)Å, , = 104.531(3)°, Z = 4. The structures exhibit both intra and intermolecular hydrogen bonds. Dihydropyridine ring of both the compounds adopt a flat boat conformation. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal growth and structural refinement of NaMn7O12CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10-11 2005E. Gilioli Abstract We report the crystal growth and the structural refinement of NaMn7O12, a manganite having a double perovskite structure. As in many similar compounds, there is coexistence of Mn3+ and Mn4+ but in this material they orderly occupy different sites for crystallographic reasons. Therefore, this peculiar structure can be considered as a model system for studying complex mechanisms such as charge, orbital and spin ordering. High purity bulk samples and "large" single crystals are needed to study tiny modifications in the crystallographic and magnetic structures associated to the ordering phenomena. Almost single phase (more than 96% pure) and single crystals (up to about 150 µm) of NaMn7O12 were synthesized by solid state reaction under pressure in a multi-anvil apparatus. Single crystal x-ray diffraction and SEM analysis have been used to characterize the crystals. The structure refinement indicates that NaMn7O12 crystallizes in the cubic Im3 space group, with a = 7.312 Å and Z = 2. Further studies are in progress to optimize the synthesis conditions, in order to grow larger crystals. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis, structural and thermal studies of tetrathioureacopper(I) chloride crystalsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2005M. Dhandapani Abstract Tetrathioureacopper(I) chloride, hereafter abbreviated as TCC, was synthesised and single crystals were obtained from saturated aqueous solution by slow evaporation (solution growth) method at room temperature. The crystals obtained are bright, colourless and transparent having well defined external faces. The grown crystals were characterized through elemental analysis, single crystal X-ray diffraction study, thermal analysis, electron spin resonance spectroscopy and Fourier Transform infrared spectroscopy. The elemental analysis confirms the stoichiometry of the compound. The single crystal diffraction studies indicate that TCC crystallises in the tetragonal lattice and the unit cell parameters are a = b = 13.4082 Å, c = 13.8074 Å, V = 2482.29 Å3, , = , = , = 90°. Space group and the number of molecules per unit cell (Z) are found to be P41212 and 8 respectively. The TG curve of the sample shows a prolonged decomposition from 210 to 628.3 °C, from which the decomposition pattern has been formulated. The endothermic peaks in the DTA curve indicate melting and decomposition of the compound at 165.2 and 633.8 °C respectively. An exothermic peak in high temperature DSC indicates a phase transition in the compound at 274.8 °C. Thermal anomalies observed in the low temperature DSC at ,163.3, ,152.0, ,141.5, ,108.3, 1.0 and 12.1 °C in the heating run and ,157.1 and ,153.9 °C in the cooling run reveal first order phase transitions in the crystal. The peaks observed at ,146.2 °C in both the heating and cooling runs suggest occurrence of a second order phase transition in this compound. The IR spectroscopic data were used to assign the characteristic vibrational frequencies of various groups present in the compound. The ESR study confirms that the copper is in the +1 oxidation state in the complex. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Configuration, conformation and crystal structure of rabdosianin bCRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2005Bao Lin Li Abstract Rabdosianin B, 7,20-epoxy-7,-hydroxy-1,,6,,11,,15,-tetraacetoxy- ent -kaur-16-ene, C28H38O10, was the first isolated from Isodon henryi. It consists of three six-membered rings A, B, C and one five-membered ring D. The fused-ring system A, B and C are in chair, boat and chair conformations, respectively, and ring D is in an envelope conformation, on the basis of NMR and X-ray diffraction analysis. The crystal of rabdosianin B is in orthorhombic crystal system with space group P212121, lattice constants: a = 9.969(1) Å, b = 15.400(3) Å, and c = 17.624(3) Å, Z = 4. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis, spectroscopic studies and ab-initio structure determination from X-ray powder diffraction of bis-(N-3-acetophenylsalicylaldiminato)copper(II)CRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2005S. Banerjee Abstract The synthesis, spectroscopic studies and crystal structure determination from X-ray powder diffraction have been carried out for bis-(N-3-acetophenylsalicylaldiminato)copper(II). The structure is triclinic, space group P1 with unit cell dimensions a = 11.817(1) Å, b = 12.087(1) Å, c = 9.210(1) Å, , = 102.62(1)°, , = 111.16(1)°, , = 86.15(1)°, V = 1197.0(2)Å3, Z = 2. The structure has been solved by Monte Carlo simulated annealing approach and refined by GSAS package. The final Rp value was 8.68%. The coordination geometry around the copper atom in the complex is intermediate between square-planar and tetrahedral with two salicylaldimine ligands in trans arrangement. Intermolecular C,H,O hydrogen bonds between molecules related by translation generate infinite chains along [010] direction. The molecular chains are linked via additional C,H,O hydrogen bonds to form a three-dimensional supramolecular network. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal structure of N-[(1Z)-1-(3-methyl-3-phenylcyclobutyl)-2-thiomorpholin-4-ylethylidene] thioureaCRYSTAL RESEARCH AND TECHNOLOGY, Issue 7 2005U. Sar Abstract The crystal structure of N-[(1Z)-1-(3-methyl-3-phenylcyclobutyl)-2-thiomorpholin-4-ylethylidene] thiourea (C18H26N4S2) has been determined by X-ray crystallographic techniques. The compound crystallizes in the orthorhombic space group Pbca, with unit cell parameters: a = 15.692(3), b = 20.803(8), c = 11.979(6)Å, Z = 8, V = 3911(7)Å3. The crystal structure was solved by direct methods and refined by full-matrix least squares to a final R-value of 0.084 for 1447 observed reflections [I > 2, ( I ) ]. In the thiosemicarbazide moiety, the S = C bond length is 1.656(6), N-C-N angle is 115.6(5)°. The crystal structure is stabilized by the intermolecular N-H...S hydrogen bonds. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Crystal structure of ,-phenoxo bridged dicopper complex: {N-[(2-hydroxylato-5-methyl)benzyl-(2,-hydroxylato-3,,5,-dimethylbenzyl)]ethyl amine dicopper(II)}CRYSTAL RESEARCH AND TECHNOLOGY, Issue 12 2002S. M. Malathy Sony Abstract The title compound crystallizes in monoclinic space group C2/c with cell parameters a = 21.404(2), b = 13.962(1), c = 17.917(1)Å, , = 124.394(2)°, V = 4418.3(6)Å3, Z = 8, Dcal = 1.193Mg/m3 and T = 293 K. The structure was solved by Patterson method and refined by full-matrix least-squares procedures to final R = 0.0882 using 5253 observed reflections. The tetra coordinated copper atom have a slight distorted square planar geometry with the Cu-Cu distance of 2.987(1)Å. The two six membered rings containing copper atom assume distorted sofa conformation. C-H,, and C-H,O type of intermolecular interactions play a role in stabilizing the crystal packing in addition to van der Waals forces. [source] Projecting 2D gene expression data into 3D and 4D spaceDEVELOPMENTAL DYNAMICS, Issue 4 2007Victor E. Gerth Abstract Video games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame. The feeling of movement is then achieved by mathematically simulating camera movement relative to the polygonal frame. We have built customized scripts that adapt video game authoring software to texture mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV mapping, associates two-dimensional (U and V) coordinates within images to the three dimensions (X, Y, and Z) of a b-spline model. B-spline model frameworks were built either from confocal data or de novo extracted from 2D images, once again using video game authoring approaches. This system was then used to build 3D models of 182 genes expressed in developing Xenopus embryos and to implement these in a web-accessible database. Models can be viewed via simple Internet browsers and utilize openGL hardware acceleration via a Shockwave plugin. Not only does this database display static data in a dynamic and scalable manner, the UV mapping system also serves as a method to align different images to a common framework, an approach that may make high-throughput automated comparisons of gene expression patterns possible. Finally, video game systems also have elegant methods for handling movement, allowing biomechanical algorithms to drive the animation of models. With further development, these biomechanical techniques offer practical methods for generating virtual embryos that recapitulate morphogenesis. Developmental Dynamics 236:1036,1043, 2007. © 2007 Wiley-Liss, Inc. [source] Cerebral palsy and newborn care: I, II, and III (1981)DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 12 2008Fiona Stanley MD Another in our series of commentaries on notable papers from the DMCN archives. The full papers are available at http://www.mackeith.co.uk Kiely JL, Paneth N, Stein Z, Susser M. Cerebral palsy and newborn care. I: Secular trends in cerebral palsy. Dev Med Child Neurol 1981; 23: 533,38. Kiely JL, Paneth N, Stein Z, Susser M. Cerebral palsy and newborn care. II: Mortality and neurological impairment in low-birthweight infants. Dev Med Child Neurol 1981; 23: 650,59. Kiely JL, Paneth N, Stein Z, Susser M. Cerebral palsy and newborn care. III: Estimated prevalence rates of cerebral palsy under differing rates of mortality and impairment of low-birthweight infants. Dev Med Child Neurol 1981; 23: 801,07. [source] Effects and serum levels of glibenclamide and its active metabolites in patients with type 2 diabetesDIABETES OBESITY & METABOLISM, Issue 6 2001A. Jönsson SUMMARY Objective To study the effects and serum levels of glibenclamide (Gb) and its active metabolites in patients on chronic Gb medication on different daily doses. Material and methods Fifty patients with type 2 diabetes on regular Gb therapy (1.75,14.0 mg daily). Blood samples were taken immediately before and 90 min after regular Gb intake. A standardized breakfast was served 30 min after drug intake. Serum insulin and proinsulin levels were determined by ELISA methods without cross-reactivities. Serum drug levels were determined by HPLC. Fischer's R to Z -test (correlation coefficients) and paired Student t -tests were used when comparing values within the entire group and unpaired non-parametric Mann,Whitney tests were used when comparing high and low dose levels. A p-value <,0.05 was considered significant. Results There were significant correlations between daily Gb dose, on the one hand, and, on the other, HbAlc (r = 0.55), ,-insulin (r = , 0.59) and ,-proinsulin (r = , 0.52) levels. Significant correlations between Gb therapy duration and insulin (r = , 0.40) and proinsulin (r = , 0.34) secretion and between Gb dose and ratio proinsulin/insulin (RPI) at both time points (r = 0.32 and 0.30) were also found. The RPI was lower after Gb intake. In patients on , 10.5 mg steady state serum metabolite levels (Ml and Ml + M2) were higher (29(0,120) and 33 (0,120) ng/ml) than those of Gb itself (18(0,64) ng/ml). A great inter-subject variability in Gb levels at both time points was seen. Conclusions Our results indicate that, in patients on chronic medication, Gb is capable of stimulating both insulin and proinsulin secretion; the effect on insulin release is relatively greater. The effect was more pronounced in patients on a low Gb dose, either because of less impaired ,-cells in those receiving low doses, or due to reduced sulphonylurea sensitivity in those on high dosage (down-regulation). In patients on a daily dose of 10.5 mg or more, serum metabolite levels of clinical relevance were demonstrated; the metabolites may contribute to hypoglycaemic events. [source] |