Young Embryos (young + embryo)

Distribution by Scientific Domains


Selected Abstracts


Divergent roles of the DEAD-box protein BS-PL10, the urochordate homologue of human DDX3 and DDX3Y proteins, in colony astogeny and ontogeny

DEVELOPMENTAL DYNAMICS, Issue 6 2006
Amalia Rosner
Abstract Proteins of the highly conserved PL-10 (Ded1P) subfamily of DEAD-box family, participate in a wide variety of biological functions. However, the entire spectrum of their functions in both vertebrates and invertebrates is still unknown. Here, we isolated the Botryllus schlosseri (Urochordata) homologue, BS-PL10, revealing its distributions and functions in ontogeny and colony astogeny. In botryllid ascidians, the colony grows by increasing the number of modular units (each called a zooid) through a whole colony synchronized and weekly cyclical astogenic budding process (blastogenesis). At the level of the colony, both BS-PL10 mRNA and its protein (78 kDa) fluctuate in a weekly pattern that corresponds with the animal's blastogenic cycle, increasing from blastogenic stage A to blastogenic stage D. At the organ/module level, a sharp decline is revealed. Primary and secondary developing buds express high levels of BS-PL10 mRNA and protein at all blastogeneic stages. These levels are reduced four to nine times in the new set of functional zooids. This portrait of colony astogeny differed from its ontogeny. Oocytes and sperm cells express high levels of BS-PL10 protein only at early stages of development. Young embryos reveal background levels with increased expressions in some organs at more developed stages. Results reveal that higher levels of BS-PL10 mRNA and protein are characteristic to multipotent soma and germ cells, but patterns deviate between two populations of differentiating stem cells, the stem cells involved in weekly blastogenesis and stem cells involved in embryogenesis. Two types of experimental manipulations, zooidectomy and siRNA assays, have confirmed the importance of BS-PL10 for cell differentiation and organogenesis. BS-PL10 (phylogenetically matching the animal's position in the evolutionary tree), is the only member of this subfamily in B. schlosseri, featuring a wide range of biological activities, some of which represent pivotal roles. The surprising weekly cyclical expression and the participation in cell differentiation posit this molecule as a model system for studying PL10 protein subfamily. Developmental Dynamics 235:1508,1521, 2006. © 2006 Wiley-Liss, Inc. [source]


Immunolocalization of the PmSUC1 Sucrose Transporter in Plantago major Flowers and Reporter-Gene Analyses of the PmSUC1 Promoter Suggest a Role in Sucrose Release from the Inner Integument

PLANT BIOLOGY, Issue 3 2007
C. Lauterbach
Abstract: This paper presents a detailed analysis of the PmSUC1 gene from Plantago major, of its promoter activity in Arabidopsis, and of the tissue specific localization of the encoded protein in Plantago. PmSUC1 promoter activity was detected in the innermost layer of the inner integument (the endothel) of Arabidopsis plants expressing the gene of the green fluorescent protein (GFP) under the control of the PmSUC1 promoter. This promoter activity was confirmed with a PmSUC1-specific antiserum that identified the PmSUC1 protein in the endothel of Plantago and of Arabidopsis plants expressing the PmSUC1 gene under the control of its own promoter. PmSUC1 promoter activity and PmSUC1 protein were also detected in pollen grains during maturation inside the anthers and in pollen tubes during and after germination. These results demonstrate that PmSUC1 is involved in sucrose partitioning to the young embryo and to the developing pollen and growing pollen tube. In the innermost cell layer of the inner integument, a tissue that delivers nutrients to the endosperm and the embryo, PmSUC1 may catalyze the release of sucrose into the apoplast. [source]


Toxicity of dispersed weathered crude oil to early life stages of Atlantic herring (Clupea harengus)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2010
Stephen McIntosh
Abstract Reports of the chronic toxicity of dispersed crude oil to early life stages of fish perpetuate uncertainty about dispersant use. However, realistic exposures to dispersed oil in the water column are thought to be much briefer than exposures associated with chronic toxicity testing. To address this issue, the toxicity of dispersed weathered oil to early life stages of Atlantic herring (Clupea harengus) was tested for short exposure durations, ranging from 1 to 144,h. Toxicity was a function of concentration and duration of exposure, as well as of the life stage exposed. Medium South American crude oil dispersed with Corexit 9500 caused blue sac disease in embryos, but not in free-swimming embryos. The age of embryos was negatively correlated with their sensitivity to oil; those freshly fertilized were most sensitive. Sensitivity increased after hatch, with free-swimming embryos showing signs of narcosis. Gametes were also tested; dispersed oil dramatically impaired fertilization success. For exposures of less than 24,h, gametes and free-swimming embryos were the most sensitive life stages. For those of more than 24,h, young embryos (<1 d old) were most sensitive. The results are presented as statistical models that could assist decisions about dispersant use in the vicinity of fish spawning habitats. Environ. Toxicol. Chem. 2010;29:1160,1167. © 2010 SETAC [source]


Short-term cold storage of blowfly Lucilia sericata embryos

INSECT SCIENCE, Issue 3 2008
Bo Zhang
Abstract The developmental rate under low temperatures and cold tolerance were investigated in embryos of the blowfly Lucilia sericata. The larvae of this species are now widely used in maggot debridement therapy. Embryonic development was dependent on temperature, with a lower developmental threshold of 9.0 °C. The duration of the egg stage at a rearing temperature of 25 °C was 14 h, and a low temperature of 12.5 °C successfully prolonged this period to 66 h. Embryonic stages differed markedly in their cold tolerance; young embryos were less tolerant to cold than old ones. Late embryonic stages are suitable for cold storage at 5 °C and the storage for 72 h did not decrease the hatching rate by more than 50%. In the mass-rearing process required for maggot debridement therapy, either of these two simple protocols would be beneficial. [source]


The Biology of the Development of the Genital Organs.

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2005
A Multimedia Teaching Program
In my presentation, I review the sexual differentiation from the genetic sex until the appearance of the external genitalia and the developmental anomalies to use an animated cartoon. The first critical stage of sexual differentiation occurs at the moment of fertilization, when the genetic sex of the zygote is determined by the nature of the sex chromosome contributed by the sperm. Although an XY zygote is destined to become a male, no distinctive differences between the early development of male and female embryos have been noted. This is accomplished after migration of the primordial germ cell into the early gonad. Because of the early commonality of genital structures, anomalies are the result of abnormal retention or loss of appropriate genital structures. Therefore, most genital anomalies are some form of intersex. During the early differentiation of the gonads, while the mesonephros is still the dominant excretory organ, the gonads arise as ridge like thickenings (gonadal ridge) on its ventromedial face. Differentiation of the indifferent gonads into ovaries or testes occurs after the arrival of the primordial germ cells. The primordial germ cells arise from the endodermal cells of the yolk. The principal function of the Y chromosome is to direct the differentiation of the presented indifferent gonad into a testis from the sixth week, while two X chromosome are presented the ovaries start to develop, from the 12th week. The next and most obvious phase in sexual differentiation of the embryo is the differentiation of the somatic sex. The early embryo develops a dual set of potential genital ducts, one is the original mesonephric (Wolff ) ducts, which persists after degeneration of the mesonephros as an excretory organ, and the another is newly formed pair of ducts called the paramesonephric (Müllerian) ducts. Under the influence of testosterone secreted by the testes, the mesonephric ducts develop into the duct system through which the spermatozoa are conveyed from the testes to the urethra. The potentially female paramesonephric ducts regress under the influence of another product of the embryonic testes, the Müllerian inhibitory factor, a glycoprotein secreted by the Sertoli cells. In genetically female embryos, neither testosterone nor Müllerian inhibitory factor are secreted by the gonads. In the absence of testosterone the mesonephric ducts regress and lack of Müllerian inhibitory factor permits the paramesonephric ducts to develop into oviducts, the uterus and part of the vagina. The next stage is the development of the external genitalia. In very young embryos, a vaguely outlined elevation known as the genital eminence can be seen in the midline, just cephalic to the proctodeal depression. This is soon differentiated into a central prominence (genital tubercle) closely flanked by a pair of folds (genital folds) extending toward the proctodeum. Somewhat farther to either side are rounded elevation known as the genital swellings. From this common starting point the external genitalia of both sex differentiate. If the individual is to develop into a male the genital tubercle, under the influence of dihydrotestosterone, becomes greatly elongated to form the penis and the genital swellings become enlarged to form the scrotal pouches. During the growth of the penis a groove develops along the entire length of its caudal face and is continuous with the slit-like opening of the urogenital sinus. This groove later becomes closed over by a ventral fusion of the genital folds, establishing the penile portion of the urethra. The portion of the urogenital sinus between the neck of the bladder and the original opening of the urogenital sinus becomes the prostetic urethra. In the female, the genital tubercle becomes the clitoris, the genital folds become the labia minora, and the genital swellings become the labia majora. The urethra in the female is derived from the urogenital sinus, being homologous with the prostatic portion of the male urethra. [source]