Home About us Contact | |||
Yeast Suspension (yeast + suspension)
Selected AbstractsPreparation and adsorption behavior of a cellulose-based, mixed-mode adsorbent with a benzylamine ligand for expanded bed applicationsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Dong Gao Abstract A novel mixed-mode expanded bed adsorbent with anion-exchange properties was explored with benzylamine as the functional ligand. The cellulose composite matrix, densified with stainless steel powder, was prepared with the method of water-in-oil suspension thermal regeneration. High activation levels of the cellulose matrix were obtained with allyl bromide because of the relative inertness of the allyl group under the conditions of the activation reaction. After the formation of the bromohydrin with N -bromosuccinimide and coupling with benzylamine, the activated matrix was derived to function as a mixed-mode adsorbent containing both hydrophobic and ionic groups. The protein adsorption capacity was investigated with bovine serum albumin as a model protein. The results indicated that the prepared adsorbent could bind bovine serum albumin with a high adsorption capacity, and it showed salt tolerance. Effective desorption was achieved by a pH adjustment across the isoelectric point of the protein. The interactions between the cell and adsorbent were studied, and the bioadhesion was shielded by the adjustment of the salt concentration above 0.1M. Stable fluidization in the expanded bed was obtained even in a 2% (dry weight) yeast suspension. The direct capture of target proteins from a biomass-containing feedstock without extra dilution steps could be expected with the mixed-mode adsorbent prepared in this work, and this would be especially appropriate for expanded bed adsorption applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Enzyme recovery during gas/liquid two-phase flow microfiltration of enzyme/yeast mixturesBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2002Muriel Mercier-Bonin Abstract The effect of a gas/liquid two-phase flow on the recovery of an enzyme was evaluated and compared with standard crossflow operation when confronted with the microfiltration of a high-fouling yeast suspension. Ceramic tubular and flat sheet membranes were used. At constant feed concentration (permeate recycling) and transmembrane pressure, the results obtained with the tubular membrane were dependent on the two-phase flow pattern. In comparison with single-phase flow performances at the same liquid velocity, the enzyme transmission was maintained at a high level with a bubble flow pattern but it decreased by 70% with a slug flow, whatever the flow rate ratio. Identical results were obtained with flat sheet membranes: for the highest flow rate ratio, the enzyme transmission was reduced by 70% even though the permeate flux was improved by 240%. During diafiltration experiments with the tubular membrane, it was found that a bubble flow pattern led to a 13% higher enzyme recovery compared to single-phase flow conditions, whereas with a slug flow the enzyme recovery was strongly reduced. With bubble flow conditions, energy consumption was minimal, confirming that this flow pattern was the most suitable for enzyme recovery. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 610,621, 2002. [source] Flocculation of biological cells: Experiment vs. theoryAICHE JOURNAL, Issue 7 2003Binbing Han Flocculation of biological cells is important in the biotechnology industry, as it could lead to improved efficiencies for bioreactor harvesting operations such as microfiltration. Experimental studies for flocculation of yeast and CHO cells using cationic polyelectrolytes suggest the existence of a steady-state, self-similar floc size distribution. The experimentally determined floc size distributions were modeled using a population balance approach. For flocculated yeast suspensions, the variation of the floc volume fraction with dimensionless particle diameter is predicted by the population balance model assuming a binary breakage distribution function. However, the variation of floc number fraction with dimensionless particle diameter is better predicted assuming a log normal fragment distribution function probably due to the presence of submicron-sized yeast cell debris. For CHO cell flocs, the floc volume and number fractions are predicted using a log normal fragment distribution function. CHO cells are far more fragile than yeast cells. Thus, individual CHO cells in a CHO cell floc can lyse leading to the formation of a number of small particles. [source] Evaluation of Process-Induced Dimensional Changes in the Membrane Structure of Biological Cells Using Impedance MeasurementBIOTECHNOLOGY PROGRESS, Issue 3 2002Alexander Angersbach The impact of high intensity electric field pulses, high hydrostatic pressure, and freezing-thawing on local structural changes of the membrane was determined for potato, sugar beet tissue, and yeast suspensions. On the basis of the electrophysical model of cell systems in biological tissues and suspensions, a method was derived for determining the extent of local damage of cell membranes. The method was characterized by an accurate and rapid on-line determination of frequency-dependent electrical conductivity properties from which information on microscopic events on cellular level may be deduced. Evaluation was based on the measurement of the relative change in the sampleapos;s impedance at characteristically low ( fl) and high ( fh) frequencies within the ,-dispersion range. For plant and animal cells the characteristic frequencies were fl , 5 kHz and fh > 5 MHz and for yeast cells in the range fl , 50 kHz and fh > 25 MHz. The observed phenomena were complex. The identification of the underlying mechanisms required consideration of the time-dependent nature of the processing effects and stress reactions of the biological systems, which ranged from seconds to several hours. A very low but significantly detectable membrane damage (0.004% of the total area) was found after high hydrostatic pressure treatment of potato tissue at 200 MPa. The membrane rupture in plant tissue cells was higher after freezing and subsequent thawing (0.9% of total area for potato cells and 0.05,0.07% for sugar beet cells determined immediately after thawing), which increased substantially during the next 2 h. [source] |