Home About us Contact | |||
X-ray Pulses (x-ray + pulse)
Selected AbstractsExcited-state molecular structures captured by X-ray transient absorption spectroscopy: a decade and beyondACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2010Lin X. Chen Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution,solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled. [source] Future possibilities of the Linac Coherent Light SourceJOURNAL OF SYNCHROTRON RADIATION, Issue 3 2004M. Cornacchia A study of the potential for the development of the Linac Coherent Light Source (LCLS) beyond the specifications of the baseline design is presented. These future developments include delivery of X-ray pulses in the 1,fs regime, extension of the spectral range, increase of the FEL power, exploitation of the spontaneous emission, and a more flexible time structure. As this potential is exploited, the LCLS can maintain its role as a world-leading instrument for many years beyond its commissioning in 2008 and initial operation as the world's first X-ray free-electron laser. [source] Measurement of the speed of X-raysJOURNAL OF SYNCHROTRON RADIATION, Issue 2 2002E. Zolotoyabko X-ray pulses from the Advanced Photon Source at Argonne National Laboratory were used to measure the speed of X-rays in the energy range between 21 and 60,keV. An LiNbO3 -based 0.58,GHz surface acoustic wave device served as a temporal analyzer in the stroboscopic time-resolved diffraction measurements. By synchronizing the surface acoustic wave excitation and periodic X-ray illumination of the LiNbO3 crystal, the temporal modifications in the LiNbO3 diffraction profiles could be followed and the time points of X-ray arrivals at the analyzer position for different analyzer to storage ring distances determined. The speed of the X-rays was determined as the ratio of measured spacings and corresponding delay time intervals. Within the experimental error bars, the obtained X-ray velocities converged to the tabulated constant for the speed of light in a vacuum. [source] Acoustic phonons in InSb probed by time-resolved X-ray diffractionPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 12 2006A. Morak Abstract Acoustical phonons in InSb were induced with femtosecond light pulses and probed by diffraction of ultrashort X-ray pulses in the crystal lattice. The time dependent transient X-ray diffraction signal due to elastic lattice deformation was measured with subpicosecond resolution. The elastic lattice deformation depends on the temporal evolution of the energy transfer from excited electrons in the semiconductor into the lattice. As already shown in previous investigation a conventional thermoelastic model is not sufficient to describe this coupling process. Here a complex simulation including a two temperature model of the electron and lattice as well as the microscopic behavior of the electron plasma is applied to explain important effects like thermal carrier diffusion and band gap deformation found in the lattice deformation experiments. When this model is used, with realistic values for both pump laser fluences and bulk material constants, excellent agreement between the experimentally observed time dependent lattice deformation and calculated values is obtained throughout the observation period. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Excited-state molecular structures captured by X-ray transient absorption spectroscopy: a decade and beyondACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2010Lin X. Chen Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution,solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled. [source] Ultrafast X-ray diffraction in liquid, solution and gas: present status and future prospectsACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2010Jeongho Kim In recent years, the time-resolved X-ray diffraction technique has been established as an excellent tool for studying reaction dynamics and protein structural transitions with the aid of 100,ps X-ray pulses generated from third-generation synchrotrons. The forthcoming advent of the X-ray free-electron laser (XFEL) will bring a substantial improvement in pulse duration, photon flux and coherence of X-ray pulses, making time-resolved X-ray diffraction even more powerful. This technical breakthrough is envisioned to revolutionize the field of reaction dynamics associated with time-resolved diffraction methods. Examples of candidates for the first femtosecond X-ray diffraction experiments using highly coherent sub-100,fs pulses generated from XFELs are presented in this paper. They include the chemical reactions of small molecules in the gas and solution phases, solvation dynamics and protein structural transitions. In these potential experiments, ultrafast reaction dynamics and motions of coherent rovibrational wave packets will be monitored in real time. In addition, high photon flux and coherence of XFEL-generated X-ray pulses give the prospect of single-molecule diffraction experiments. [source] |