X-ray Fluorescence Spectrometry (x-ray + fluorescence_spectrometry)

Distribution by Scientific Domains


Selected Abstracts


Comparison of Linear Regression Models for Quantitative Geochemical Analysis: An Example Using X-Ray Fluorescence Spectrometry

GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 3 2005
Mirna Guevara
calibration analytique; régression linéaire; matériaux de référence en géochimie; géochimie analytique; loi de propagation d'erreurs This paper presents statistical aspects related to the calibration process and a comparison of different regression approaches of relevance to almost all analytical techniques. The models for ordinary least-squares (OLS), weighted least-squares (WLS), and maximum likelihood fitting (MLF) were evaluated and, as a case study, X-ray fluorescence (XRF) calibration curves for major elements in geochemical reference materials were used. The results showed that WLS and MLF models were statistically more consistent in comparison with the usually applied OLS approach. The use of uncertainty on independent and dependent variables during the calibration process and the calculation of final uncertainty on individual results using error propagation equations are the novel aspects of our work. Cet article présente les aspects statistiques liés au processus de calibration et fait une comparaison des différents calculs de régression utilisés dans pratiquement toutes les techniques analytiques. Les modèles des moindres carrés ordinaires (MCO) et pondérés (MCP), et d'ajustement de maximum de vraisemblance (AMV) ont étéévalués et appliqués aux courbes de calibration d'éléments majeurs obtenues en analyse par fluorescence X (XRF) de matériaux certifiés de référence. Les résultats obtenus avec les modèles MCP et AMV sont plus cohérents statistiquement que ceux obtenus la méthode classique des MCO. L'utilisation de l'incertitudes sur des variables indépendantes ou dépendantes durant la procédure de calibration et le calcul de l'incertitude finale sur chaque résultat à partir des lois de propagation d'erreur sont des aspects novateurs de ce travail. [source]


Trace Elemental Analysis of Titanium Dioxide Pigments and Automotive White Paint Fragments for Forensic Examination Using High-Energy Synchrotron Radiation X-Ray Fluorescence Spectrometry,

JOURNAL OF FORENSIC SCIENCES, Issue 3 2009
Yoshinori Nishiwaki M.S.
Abstract:, High-energy synchrotron radiation x-ray fluorescence spectrometry (SR-XRF) utilizing 116 keV x-rays was used to characterize titanium dioxide pigments (rutile) and automotive white paint fragments for forensic examination. The technique allowed analysis of K lines of 9 trace elements in 18 titanium dioxide pigments (rutile), and 10 trace elements in finish coat layers of seven automotive white paint fragments. High-field strength elements (HFSE) were found to strongly reflect the origin of the titanium dioxide (TiO2) pigments, and could be used as effective parameters for discrimination and classification of the pigments and paint fragments. A pairwise comparison of the finish coat layers of seven automotive white paint fragments was performed. The trace elements in the finish coat layers detected by the high-energy SR-XRF were especially effective for identification. By introducing the trace element information of primer and electrocoat layers, all the automotive white paint fragments could be discriminated by this technique. [source]


In-situ gamma-ray spectrometric study of weathered volcanic rocks in Hong Kong

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2002
Margie Q. F. Chen
Abstract In-situ gamma-ray spectrometry (GRS) measurements were conducted at 35 sites in Hong Kong where volcanic rocks with varying extent of weathering were exposed. Elemental analyses using X-ray fluorescence spectrometry and inductively coupled plasma,mass spectrometry were carried out on samples collected from these 35 plus 22 other locations to assess the feasibility of using the GRS method to quantify the extent of weathering. The Parker weathering index, varying within a range of 0·0,0·8 for the samples studied, was used as a geochemically based reference scheme for correlating the gamma-ray spectrometric results with the extent of weathering. For the former 35 sites, the concentrations of the three major radioelements, K, U and Th, determined by in-situ GRS were compared to laboratory-determined values from the samples. The study reveals that no significant change occurs to the contents of the three radioelements during the initial state of weathering. But once the rocks become highly weathered, further progression of weathering is accompanied by a systematic removal of K and an increased dispersion of U and Th. The results show that K content, which is indicative of the extent of weathering, can be retrieved reliably with the gamma-ray spectrometry technique. The study has given support to the potential use of the downhole spectral gamma method for evaluation of weathering grade and the detection of subsurface clay-rich levels. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Novel Thorium Membrane Sensors with Anionic Response Based on Trioctylphosphine Oxide and Toluate Ionophores

ELECTROANALYSIS, Issue 19 2008

Abstract Two novel potentiometric polymeric membrane sensors for rapid and accurate determination of thorium are described. These are based on the use of trioctylphosphine oxide (TOPO) and thorium toluate (Th-TA) as ionophores dispersed in poly(vinyl chloride) matrix membranes plasticized with nitrophenyloctyl ether. In strong nitric acid medium, Th(IV) nitrate is converted into [Th(NO3)6]2, complex and sensed as anionic divalent ion which exclude most cationic effect. Validation of the assay methods using the quality assurance standards (linearity range, accuracy, precision, within-day variability, between-day-repeatability, lower detection limit and sensitivity) reveals excellent performance characteristics of both sensors. The sensors exhibit near-Nernstian response for 1.0×10,6,1.0×10,1 M Th over the pH range 2.5,4.5. Calibration slopes of ,32.3±0.3 and ,27.2±0.2,mV/decade, precision of ±0.5 and ±0.8% and accuracy of 98.8±0.9 and 97.9±0.7% are obtained with TOPO and Th-TA based sensors, respectively. Negligible interferences are caused by most interfering mono-, di-, tri-, tetra-, penta-, and hexa-valent elements commonly associated with thorium in naturally occurring minerals and ores. High concentrations of Cl,, F,, SO42,, and NO3, ions have no diverse effect. Complete removal of the effect of the interferents in complex matrices is achieved by retention of [Th(NO3)6]2, complex from 5,M nitric acid/methanol mixture (1,:,9,v/v) on a strong anion exchanger, washing out the cationic interferents followed by stripping off thorium anion complex and measurements. Both sensors are used for determining thorium in certified thorium ore samples (20,120,mg Th/kg) and some naturally occurring ores (200,600,mg Th/kg). The results obtained agree fairly well with the certified labeled values or the data obtained using X-ray fluorescence spectrometry [source]


Neutron Activation Analysis, Atomic Absorption and X-Ray Fluorescence Spectrometry Review for 2003

GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 1 2005
L. Paul Bédard
This review for the year 2003 deals with three relatively well-established, mature, analytical techniques (neutron activation analysis, atomic absorption spectrometry and X-ray fluorescence spectrometry) that nevertheless remain very important for the characterisation of geological and environmental samples. Developments in neutron activation analysis included modification to the technique in relation to the determination of platinum-group elements, as well as consideration of sample size in ore grade estimation. A considerable body of literature was published on the application of atomic absorption spectrometry in the analysis of environmental samples. Many of these proposed technical and methodological improvements, notably in extraction procedures. X-ray fluorescence spectrometry saw developments in in situ analysis, synchrotron micro-XRF (,-SRXRF) and a confocal X-ray set-up for 3D elemental imaging. XRF technologies were used in the analysis of geological samples, reference materials, glasses, solutes and environmental materials. [source]


Analysing metals in bottle-grade poly(ethylene terephthalate) by X-ray fluorescence spectrometry

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010
Wanderson Romão
Abstract After a rigorous cleaning process, recycled food-grade poly(ethylene terephthalate) (PET), can be mixed with virgin PET resin in different concentrations and used for packaging of soft drinks. Therefore, it is important to have an experimental method to distinguish the presence of recycled polymer in a batch and to check its "true quality." One of the issues to be verified is the presence of inorganic contaminants due to the recycling process. X-ray fluorescence technique is one alternative for this kind of analysis. The results obtained in this work show that bottle-grade PET samples (PET-btg) are made either via direct esterification or by a transesterification process. Samples that were subjected to thermo-mechanical processings (superclean® processing, PET-btg blends processed in our laboratory and soft drink PET packaging) present Fe K, emission lines with higher intensities than those presented by virgin bottle-grade PET. After applying principal component analysis, it can be concluded that Fe is an intrinsic contaminant after the recycling process, furnishing a way to indicate class separations of PET-btg. A calibration and validation partial least squares model was constructed to predict the weight percent of post-consumption bottle-grade PET in commercial PET samples. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


PROVENANCE STUDIES OF CHALCOLITHIC OBSIDIAN ARTEFACTS FROM NEAR LAKE URMIA, NORTHWESTERN IRAN USING WDXRF ANALYSIS

ARCHAEOMETRY, Issue 1 2010
K. A. NIKNAMI
In 2005,2006 we initiated a major archaeological survey and chemical characterization study to investigate the long-term use of obsidian along the eastern shores of Lake Urmia, northwestern Iran. Previous research in the area suggested that almost all archaeological obsidian found in this area originated from the Nemrut Da, source located in the Lake Van region of Anatolia (Turkey). More recent research on obsidian artefacts from the Lake Urmia region has identified a significant number of obsidian artefacts with compositions different from the sources near Lake Van. This suggests that the obsidian artefacts are from a yet to be identified geological source, but possibly one that was not too distant. In order to advance our knowledge of Iranian obsidians and eventually refine provenance criteria we analysed obsidian from 22 Chalcolithic sites and some source areas. The compositions of both obsidian source samples and artefacts were determined using wave length dispersive X-ray fluorescence spectrometry (WDXRF). This paper presents results from the trace elemental analysis of both geological and archaeological obsidians, providing important new data concerning the diachronic relationship between lithic technology and raw material in the north-west of Iran. [source]


Trace Elemental Analysis of Titanium Dioxide Pigments and Automotive White Paint Fragments for Forensic Examination Using High-Energy Synchrotron Radiation X-Ray Fluorescence Spectrometry,

JOURNAL OF FORENSIC SCIENCES, Issue 3 2009
Yoshinori Nishiwaki M.S.
Abstract:, High-energy synchrotron radiation x-ray fluorescence spectrometry (SR-XRF) utilizing 116 keV x-rays was used to characterize titanium dioxide pigments (rutile) and automotive white paint fragments for forensic examination. The technique allowed analysis of K lines of 9 trace elements in 18 titanium dioxide pigments (rutile), and 10 trace elements in finish coat layers of seven automotive white paint fragments. High-field strength elements (HFSE) were found to strongly reflect the origin of the titanium dioxide (TiO2) pigments, and could be used as effective parameters for discrimination and classification of the pigments and paint fragments. A pairwise comparison of the finish coat layers of seven automotive white paint fragments was performed. The trace elements in the finish coat layers detected by the high-energy SR-XRF were especially effective for identification. By introducing the trace element information of primer and electrocoat layers, all the automotive white paint fragments could be discriminated by this technique. [source]


Lead in soil by field-portable x-ray fluorescence spectrometry,an examination of paired In Situ and laboratory ICP-AES results

REMEDIATION, Issue 3 2008
David A. Binstock
A major aspect of lead hazard control is the evaluation of soil lead hazards around housing coated with lead-based paint. The use of field-portable X-ray fluorescence (FPXRF) to do detailed surveying, with limited laboratory confirmation, can provide lead measurements in soil (especially for planning abatement activities) in a far more cost-efficient and timely manner than laboratory analysis. To date, one obstacle to the acceptance of FPXRF as an approved method of measuring lead in soil has been a lack of correspondence between field and laboratory results. In order to minimize the differences between field and laboratory results, RTI International (RTI) has developed a new protocol for field drying and sieving soil samples for field measurement by FPXRF. To evaluate this new protocol, composite samples were collected in the field following both U.S. Department of Housing and Urban Development (HUD) guidelines and ASTM International (ASTM) protocols, measured after drying by FPXRF, and returned to the laboratory for confirmatory inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis. Evaluation of study data from several diverse sites revealed no statistical difference between paired FPXRF and ICP-AES measurements using the new method. © 2008 Wiley Periodicals, Inc. [source]


Chemical characterization of ancient pottery from sudan by x-ray fluorescence spectrometry (xrf), electron microprobe analyses (empa) and inductively coupled plasma mass spectrometry (ICP,MS),

ARCHAEOMETRY, Issue 3 2004
M. Klein
Sixty-four sherds and seven natural clays from prehistoric sites in northwestern Sudan have been submitted to petrological and chemical analysis using XRF spectrometry, EMPA and ICP,MS. According to their texture, the sherds form five different groups. The high contents of P2O5 (more than 0.5 wt%) discerned in 19 samples and the variation of the P2O5 content in two samples of the same vessel can be explained by post-depositional processes or by the ancient organic contents (e.g., milk) of the vessel. Chemical classification of the pottery bulk suggests that vessels were made locally, as only sherds from the same area show homogeneity of data. [source]