X-ray Absorption Near-edge Structure (x-ray + absorption_near-edge_structure)

Distribution by Scientific Domains


Selected Abstracts


X-Ray absorption fine structure analysis of the local environment of zinc in dentine treated with zinc compounds

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2 2005
Tsutomu Takatsuka
It has been reported that zinc oxide (ZnO) inhibits dentine demineralization. By using the X-ray absorption fine structure (XAFS) technique, our aims in this study were to provide information about the local environment of zinc atoms in dentine that had been treated with zinc compounds. We measured the Zn K-edge X-ray absorption near-edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) of dentine specimens treated with zinc chloride or ZnO. In XAFS analyses, the spectra of dentine specimens treated with ZnO (D-ZO) or with zinc chloride (D-ZC) were similar and obviously different from the reference ZnO spectrum. This suggests that most of the zinc atoms detected in D-ZO are not derived from particles of ZnO. The spectra of D-ZO and D-ZC were similar to the spectrum of the synthetic, zinc-containing hydroxyapatite, but were not similar to that of zinc in ZnCl2 -treated collagen. The results of this study suggest that most of the zinc atoms detected were attached to hydroxyapatite and not to collagen. [source]


Calculation of the electronic structure of AmO2 and Pr6O11 for XANES analysis with redox property

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 12 2009
Chikashi Suzuki
Abstract We calculated X-ray absorption near-edge structure (XANES) of Am LIII of AmO2 and Pr LIII of Pr6O11 using the relativistic discrete-variational (DV)-X, method based on the Dirac,Slater method, and compared it with the experimental spectra. These spectra were calculated on a model of AmO2 ([AmO8]12,) and Pr6O11 ([PrO8]12,). In spite of using small cluster models, the calculated spectra were in good agreement with the experiment ones. Besides, we calculated the electronic structure of AmO2 and Pr6O11 to analyze the peak structures of XANES. From this calculation, it was found that O s, p, and f components had influence on the specific peak structures but that O d component had influence on various peak structures for AmO2 and Pr6O11. From this result, it was suggested that the change of the electronic structure of actinide 6d and O d or f was important for actinide LIII XANES corresponding to oxygen to metal ratio in the oxide nuclear fuel. On the basis of these results, we calculated the fine structures of densities of states and the transition energy from the HOMO to the white line of AmO2, UO2, and Pr6O11 and investigated redox properties of Am and U in the oxide nuclear fuel with the evaluation of validity of Pr as simulant materials of Am. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source]


Relationship between the structural distortion and the Mn electronic state in La1,xCaxMnO3: a Mn K -edge XANES study

JOURNAL OF SYNCHROTRON RADIATION, Issue 4 2009
Jesús Chaboy
A theoretical study of the X-ray absorption near-edge structure (XANES) spectra at the Mn K -edge in the La1,xCaxMnO3 series is reported. The relationship between the edge shift, the Ca,La substitution and the distortion of the MnO6 octahedra in these systems has been studied. It is shown that, by correctly considering these effects simultaneously, the experimental XANES data are consistent with the presence of two different Mn local environments in the intermediate La1,xCaxMnO3 compounds. By taking into account the energy shift associated with the modification of the MnO6 distortion as Ca substitutes for La, it is possible to reproduce the XANES spectra of the intermediate-doped compounds starting from the experimental spectra of the end-members LaMnO3 and CaMnO3. These results point out the need to re-examine the conclusions derived in the past from the simple analysis of the Mn K -edge XANES edge-shift in these materials. In particular, it is shown that the modification of the Mn K -edge absorption through the La1,xCaxMnO3 series is well reproduced by considering the simultaneous presence of both distorted and undistorted octahedra and, consequently, that the existence of charge-ordering phenomena cannot be ruled out from the XANES data. [source]


Phosphorus L2,3 -edge XANES: overview of reference compounds

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2009
Jens Kruse
Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy is becoming an increasingly used tool for the element speciation in complex samples. For phosphorus (P) almost all XANES measurements have been carried out at the K -edge. The small number of distinctive features at the P K -edge makes in some cases the identification of different P forms difficult or impossible. As indicated by a few previous studies, the P L2,3 -edge spectra were richer in spectral features than those of the P K -edge. However, experimentally consistent spectra of a wide range of reference compounds have not been published so far. In this study a library of spectral features is presented for a number of mineral P, organic P and P-bearing minerals for fingerprinting identification. Furthermore, the effect of radiation damage is shown for three compounds and measures are proposed to reduce it. The spectra library provided lays a basis for the identification of individual P forms in samples of unknown composition for a variety of scientific areas. [source]


Local structure investigation of the active site of the imidazolonepropionase from Bacillus subtilis by XANES spectroscopy and ab initio calculations

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2008
Feifei Yang
Imidazolonepropionase is an important enzyme that plays a crucial role in the degradation of the histidine in mammals and bacteria. In this contribution a detailed structural investigation is presented of the imidazolonepropionase from Bacillus subtilis at the zinc site by X-ray absorption near-edge structure (XANES) spectroscopy combining experimental data with ab initio calculation in the framework of the multiple-scattering theory. The resolved local structure leads to a modification of the data set in the Protein Data Bank (PDB) (PDB code 2BB0). Actually, data suggest that the carboxyl of the Asp324 moves far away from the zinc ion at the center, while the water molecule and the nearest-neighbor histidines move towards it. This new conformation and the occurrence of a short water-to-zinc bond length support the nucleophilic attack catalytic mechanism proposed for this enzyme. [source]


Magnetic X-ray absorption fine structure for Ni,Mn alloys

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2003
T. Miyanaga
Magnetic X-ray absorption fine-structure (XAFS) spectra have been measured for Ni,Mn alloys. The magnetic XAFS in the near-edge region (X-ray absorption near-edge structure, XANES) and X-ray magnetic circular dichroism (XMCD) of the Mn and Ni K -edge for Ni1,xMnx (x = 0.25, 0.24 and 0.20) show that (i) the local magnetic structure around the Mn atom is quite different from that around the Ni atom, and (ii) the peak intensity in the magnetic XANES of the Mn K -edge depends on the magnetization of the sample in contrast to the Ni K -edge. The Mn K -edge magnetic EXAFS (extended XAFS) for Ni0.76Mn0.24 is also measured. The second and fourth peaks in the Fourier transform are observed to be enhanced in comparison with the non-magnetic EXAFS, indicating that the second- and fourth-shell Ni atoms are replaced by Mn atoms due to heat treatment (atomic ordering). Semi-relativistic theoretical calculation explains the observed magnetic EXAFS. [source]


Chemical Speciation of Trace Zinc in Ordinary Portland Cement Using X-ray Absorption Fine Structure Analysis

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2004
Isao Tsuyumoto
Chemical change of trace zinc in ordinary portland cement (205.1 ppm) was investigated in hydration process using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Intensities of the peaks appearing at the same energy of ZnO in XANES spectra were decreased with cement hydration. The interatomic distances and the coordination numbers of the first and the second shells calculated from EXAFS spectra indicated that ZnO hydrolyzed to zincate ion [Zn(OH)4]2, with cement hydration keeping their fundamental structure of ZnO4 tetrahedra. [source]


Electronic Structure and Bonding of All Crystalline Phases in the Silica,Yttria,Silicon Nitride Phase Equilibrium Diagram

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2004
Wai-Yim Ching
This paper reviews the structures and properties of 10 binary, ternary, and quaternary crystals within the equilibrium phase diagram of the SiO2,Y2O3,Si3N4 system. They are binary compounds SiO2, Y2O3, Si3N4; ternary compounds Si2N2O, Y2Si2O7, and YSi2O5; and quaternary crystals Y2Si3N4O3 (M-melilite), Y4Si2O7N2, (N-YAM), YSiO2N (wallastonite), and Y10(SiO4)6N2 (N-apatite, N-APT). Although the binary compounds are well-known and extensively studied, the ternary and the quaternary crystals are not. Most of the ternary and the quaternary crystals simply have been referenced as secondary phases in the processing of nitrogen ceramics. Their crystal structures are complex and not precisely determined. In the quaternary crystals, there exists O/N disorder in that the exact atomic positions of the anions cannot be uniquely determined. It is envisioned that a variety of cation,anion bonding configurations exist in these complex crystals. The electronic structure and bonding in these crystals are, therefore, of great interest and are indispensable for a fundamental understanding of structural ceramics. We have used ab initio methods to study the structure and bonding properties of these 10 crystals. For crystals with unknown or incomplete structural information, we use an accurate total energy relaxation scheme to obtain the most likely atomic positions. Based on the theoretically modeled structures, the electronic structure and bonding in these crystals are investigated and related to various local cation,anion bonding configurations. These results are presented in the form of atom-resolved partial density of states, Mulliken effective charges, and bond order values. It is shown that Y,O and Y,N bonding are not negligible and should be a part of the discussion of the overall bonding schemes in these crystals. Spectroscopic properties in the form of complex, frequency-dependent dielectric functions, X-ray absorption near-edge structure (XANES), and the electron energy-loss near-edge structure (ELNES) spectra in these crystals also are calculated and compared. These results are discussed in the context of specific bonding configurations between cations (silicon and yttrium) and anions (oxygen and nitrogen) and their implications on intergranular thin films in polycrystalline Si3N4 containing rare-earth elements. [source]


Picosecond and femtosecond X-ray absorption spectroscopy of molecular systems

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2010
Majed Chergui
The need to visualize molecular structure in the course of a chemical reaction, a phase transformation or a biological function has been a dream of scientists for decades. The development of time-resolved X-ray and electron-based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media. Furthermore, it is chemically selective. Using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. Recent developments in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution are reviewed: examples on ultrafast photoinduced processes such as intramolecular electron transfer, low-to-high spin change, and bond formation are presented. [source]


Tuning the Magnetic Properties of LixCrTi0.25Se2 (0.03,x,0.7) by Directed Deintercalation of Lithium

CHEMISTRY - A EUROPEAN JOURNAL, Issue 16 2008
Malte Behrens Dr.
Abstract X-ray diffraction (XRD), in situ energy-dispersive X-ray diffraction (EDXRD), X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and magnetic measurements were applied to investigate the effects of lithium deintercalation on pseudolayered Li0.70CrTi0.25Se2. A detailed picture of structural changes during the deintercalation process was obtained by combining the results of EDXRD and EXAFS. Removal of Li from the host,guest complex leads to anisotropic contraction of the unit cell with stronger impact on the c axis, which is the stacking axis of the layers. The EDXRD experiments evidence that the shrinkage of the lattice parameters with decreasing xLi in LixCrTi0.25Se2 is nonlinear in the beginning and then becomes linear. Analysis of the EXAFS spectra clearly shows that the Cr/TiSe distances are affected in a different manner by Li removal. The CrSe bond lengths decrease, whereas the TiSe bonds lengthen when the Li content is reduced, which is consistent with XRD data. Magnetic measurements reveal a change from predominantly antiferromagnetic exchange (,p=,300,K) interactions for the pristine material to ferromagnetic exchange interactions (,=25,K) for the fully intercalated material. Thus, the magnetic properties can be altered under ambient conditions by directed adjustment of the dominant magnetic exchange. The unusual magnetic behavior can be explained on the basis of the variation of the metal,metal distances and the Cr-Se-Cr angles with x, which were determined by Rietveld refinements. Owing to competing ferromagnetic and antiferromagnetic exchange interactions and disorder, the magnetic ground state of the intercalated materials is characterized by spin-glass or spin-glass-like behavior. [source]


Increasing the Number of Oxygen Vacancies on TiO2 by Doping with Iron Increases the Activity of Supported Gold for CO Oxidation

CHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2007
Silvio Carrettin Dr.
Abstract The addition of iron to high-area TiO2 (Degussa P25, a mixture of anatase and rutile) increases the number of oxygen defect sites that react with O2 to form peroxide and superoxide species. In the presence of gold nanoclusters on the TiO2 surface, the superoxide species become highly reactive, and the activity of the supported gold catalyst for CO oxidation is approximately twice that of the most active comparable catalysts described in the literature. Images of the catalyst obtained by scanning transmission electron microscopy combined with spectra of the catalyst measured in the working state (Raman, extended X-ray absorption fine structure, and X-ray absorption near-edge structure) indicate strong interactions of gold with the support and the presence of iron near the interfaces between the gold clusters and the TiO2 support. The high activity of the catalysts is attributed to the presence of defects in these sites that activate oxygen. [source]


Linear Dichroism in the XANES of Partially Oriented Samples: Theory and Application to the Photosynthetic Manganese Complex,

CHEMPHYSCHEM, Issue 6 2010
Peter Liebisch Dr.
Abstract For molecular systems which are partially ordered with respect to one macroscopic axis, for example, the sample,surface normal, X-ray absorption spectroscopy (XAS) with linearly polarized synchrotron radiation can provide information on structure and orientation of the X-ray absorbing site (polarized or linear-dichroism XAS). Examples for such partially oriented systems are protein-carrying membrane particles deposited in the form of multilayers on surfaces, layered minerals, surface films or imperfect 2D crystals, planar electrodes or catalytic surfaces. For electric dipole transitions, equations are derived describing how partial unidirectional orientation determines the linear dichroism (LD). The approach presented facilitates description of 1) LD in multiple-scattering contributions of the extended X-ray absorption fine-structure (EXAFS) and 2) of LD in the X-ray absorption near-edge structure (LD-XANES). Structural and orientation information becomes accessible by combination with ab initio XANES calculations. The LD-XANES approach is applied to the water-oxidizing Mn complex of photosystem II. The results suggest that the (,-O)-(,-O) vectors of the Mn-(,-O)2 -Mn units are at an average angle to the membrane normal of 30,45°. The best-fit structure in connection with crystallographic data suggests a specific oxidation-state assignment: Mn(1)IIIMn(2)IIIMn(3)IVMn(4)IV. However, currently this assignment remains uncertain. In future studies, the LD-XANES analysis should play an important role in construction of unequivocal atomic-resolution model of the photosynthetic Mn complex. [source]


Chemical speciation and cellular deposition of lead in Sesbania drummondii

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2004
Nilesh C. Sharma
Abstract The internalized speciation of lead in roots and leaves of Sesbania drummondii, a lead hyperaccumulator, grown in lead nitrate solution was studied using x-ray absorption near-edge structure and extended x-ray absorption fine structure. Lead was predominantly present as lead acetate in both plant tissues. The other dominant forms of accumulation were lead,sulfur compounds. Whereas lead sulfate and sulfide were found in leaves, only lead sulfide was detected in root samples. These observations indicate that S. drummondii is able to biotransform lead nitrate in the nutrient solution to lead acetate and sulfate in its tissues. Complexation with acetate and sulfate may be a lead detoxification strategy in this plant. Transmission-electron microscopy revealed the pattern of lead distribution in and around the cells. Dense distributions of lead grains were detected in root cell walls and plasma membranes, whereas evidence for vacuolar transport of lead was noticed in the stem cells. [source]