Home About us Contact | |||
Wood Formation (wood + formation)
Selected AbstractsAn Overview of the Biology of Reaction Wood FormationJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 2 2007Sheng Du Abstract Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reaction wood in gymnosperms is referred to as compression wood and develops on the lower side of leaning stems or branches. In arboreal, dicotyledonous angiosperms, however, it is called tension wood and is formed on the upper side of the leaning. Exploring the biology of reaction wood formation is of great value for the understanding of the wood differentiation mechanisms, cambial activity, gravitropism, and the systematics and evolution of plants. After giving an outline of the variety of wood and properties of reaction wood, this review lays emphasis on various stimuli for reaction wood induction and the extensive studies carried out so far on the roles of plant hormones in reaction wood formation. Inconsistent results have been reported for the effects of plant hormones. Both auxin and ethylene regulate the formation of compression wood in gymnosperms. However, the role of ethylene may be indirect as exogenous ethylene cannot induce compression wood formation. Tension wood formation is mainly regulated by auxin and gibberellin. Interactions among hormones and other substances may play important parts in the regulation of reaction wood formation. [source] Tension wood as a model for functional genomics of wood formationNEW PHYTOLOGIST, Issue 1 2004Gilles Pilate Summary Wood is a complex and highly variable tissue, the formation of which is developmentally and environmentally regulated. In reaction to gravitropic stimuli, angiosperm trees differentiate tension wood, a wood with specific anatomical, chemical and mechanical features. In poplar the most significant of these features is an additional layer that forms in the secondary wall of tension wood fibres. This layer is mainly constituted of cellulose microfibrils oriented nearly parallel to the fibre axis. Tension wood formation can be induced easily and strongly by bending the stem of a tree. Located at the upper side of the bent stem, tension wood can be compared with the wood located on its lower side. Therefore tension wood represents an excellent model for studying the formation of xylem cell walls. This review summarizes results recently obtained in the field of genomics on tension wood. In addition, we present an example of how the application of functional genomics to tension wood can help decipher the molecular mechanisms responsible for cell wall characteristics such as the orientation of cellulose microfibrils. [source] Gene Expression during Formation of Earlywood and Latewood in Loblolly Pine: Expression Profiles of 350 GenesPLANT BIOLOGY, Issue 6 2004U. Egertsdotter Abstract: The natural variability of wood formation in trees affords opportunities to correlate transcript profiles with the resulting wood properties. We have used cDNA microarrays to study transcript abundance in developing secondary xylem of loblolly pine (Pinus taeda) over a growing season. The cDNAs were selected from a collection of 75 000 ESTs that have been sequenced and annotated (http:web.ahc.umn.edubiodatansfpine). Cell wall thickness and climatic data were related to earlywood and latewood formation at different time points during the growing season. Seventy-one ESTs showed preferential expression in earlywood or latewood, including 23 genes with no significant similarity to genes in GenBank. Seven genes involved in lignin synthesis were preferentially expressed in latewood. The studies have provided initial insights into the variation of expression patterns of some of the genes related to the wood formation process. [source] Analyses of GA20ox - and GID1 -over-expressing aspen suggest that gibberellins play two distinct roles in wood formationTHE PLANT JOURNAL, Issue 6 2009Mélanie Mauriat Summary Gibberellins (GAs) are involved in many aspects of plant development, including shoot growth, flowering and wood formation. Increased levels of bioactive GAs are known to induce xylogenesis and xylem fiber elongation in aspen. However, there is currently little information on the response pathway(s) that mediate GA effects on wood formation. Here we characterize an important element of the GA pathway in hybrid aspen: the GA receptor, GID1. Four orthologs of GID1 were identified in Populus tremula × P. tremuloides (PttGID1.1,1.4). These were functional when expressed in Arabidopsis thaliana, and appear to present a degree of sub-functionalization in hybrid aspen. PttGID1.1 and PttGID1.3 were over-expressed in independent lines of hybrid aspen using either the 35S promoter or a xylem-specific promoter (LMX5). The 35S:PttGID1 over-expressors shared several phenotypic traits previously described in 35S:AtGA20ox1 over-expressors, including rapid growth, increased elongation, and increased xylogenesis. However, their xylem fibers were not elongated, unlike those of 35S:AtGA20ox1 plants. Similar differences in the xylem fiber phenotype were observed when PttGID1.1, PttGID1.3 or AtGA20ox1 were expressed under the control of the LMX5 promoter, suggesting either that PttGID1.1 and PttGID1.3 play no role in fiber elongation or that GA homeostasis is strongly controlled when GA signaling is altered. Our data suggest that GAs are required in two distinct wood-formation processes that have tissue-specific signaling pathways: xylogenesis, as mediated by GA signaling in the cambium, and fiber elongation in the developing xylem. [source] Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspenTHE PLANT JOURNAL, Issue 6 2002Richard Moyle Summary Indole acetic acid (IAA/auxin) profoundly affects wood formation but the molecular mechanism of auxin action in this process remains poorly understood. We have cloned cDNAs for eight members of the Aux/IAA gene family from hybrid aspen (Populus tremula L. × Populus tremuloides Michx.) that encode potential mediators of the auxin signal transduction pathway. These genes designated as PttIAA1-PttIAA8 are auxin inducible but differ in their requirement of de novo protein synthesis for auxin induction. The auxin induction of the PttIAA genes is also developmentally controlled as evidenced by the loss of their auxin inducibility during leaf maturation. The PttIAA genes are differentially expressed in the cell types of a developmental gradient comprising the wood-forming tissues. Interestingly, the expression of the PttIAA genes is downregulated during transition of the active cambium into dormancy, a process in which meristematic cells of the cambium lose their sensitivity to auxin. Auxin-regulated developmental reprogramming of wood formation during the induction of tension wood is accompanied by changes in the expression of PttIAA genes. The distinct tissue-specific expression patterns of the auxin inducible PttIAA genes in the cambial region together with the change in expression during dormancy transition and tension wood formation suggest a role for these genes in mediating cambial responses to auxin and xylem development. [source] |