Home About us Contact | |||
Wounding
Kinds of Wounding Selected AbstractsUltraweak and Induced Photon Emission After Wounding of PlantsPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2009R. Winkler The ultraweak and induced photon emission were measured by a single photon counting equipment (Photomultiplier Hamamatsu R562) on Cucurbita pepo variaca styriacae after wounding. Wounding significantly changes the emission from a stationary to a nonstationary state and the shape of the decay curve obtained after light illumination. The rise in the ultraweak photon emission depends on the kind of wounding and its localization on the plant. The decay curves obtained after wounding could be better fit by an exponential function than by a hyperbolic one. So the biophoton emission correlates with physiological and bioelectrical changes like membrane depolarizations as they also depend on the kind of injury. [source] A role for PSK signaling in wounding and microbial interactions in ArabidopsisPHYSIOLOGIA PLANTARUM, Issue 4 2010Maaria Loivamäki PSK- , is a disulfated peptide that acts as a growth factor in plants. PSK- , is derived from preproproteins which are encoded by five PSK precursor genes in Arabidopsis thaliana (L.) Heynh and is perceived by leucine-rich repeat receptor kinases. Arabidopsis has two PSK receptor genes, PSKR1 and PSKR2. Although ligand and receptor are well characterized, the biological functions of PSK signaling are not well understood. Using reporter lines and receptor knockout mutants of Arabidopsis, a role for PSK signaling in biotic interactions and in wounding was analyzed. Treatment of Arabidopsis leaves with the fungal elicitor E-Fol, or the fungal pathogens Alternaria brassicicola and Sclerotinia sclerotiorum resulted in induction of PSK2 and PSKR1 as shown by promoter:GUS analysis. Wounding of hypocotyls or leaves induced PSK3:GUS, PSK5:GUS and PSKR1:GUS expression indicating that PSK precursor genes are differentially regulated in response to specific stresses. The receptor knockout lines pskr1-3 and pskr2-1 showed significantly reduced photosynthesis in response to the fungal elicitor E-Fol which indicates that fungal defence is impaired. pskr1-3 plants further showed reduced growth of crown galls after infection with Agrobacterium tumefaciens. A role for PSK signaling in Agrobacterium tumefaciens tumor growth was supported by the finding that PSK precursor genes and PSKR1 are expressed in crown galls. Overall, the results indicate that PSK signaling may play a previously undescribed role in pathogen or herbivore interactions and is crucial for Agrobacterium -induced cell proliferation in crown gall formation. [source] Isolation and characterization of a wound inducible phenylalanine ammonia-lyase gene (LsPAL1) from Romaine lettuce leavesPHYSIOLOGIA PLANTARUM, Issue 3 2004Reinaldo Campos Phenylalanine ammonia-lyase (PAL) catalyses the first step controlling the rate of phenylpropanoid metabolism. Wounding is a ubiquitous stress in nature and in the harvesting and preparation of fruits and vegetables that induces an increase in PAL activity, an accumulation of phenolic compounds and subsequent tissue browning. A wound-inducible PAL gene (LsPAL1) was isolated from Romaine lettuce by RT-PCR. The putative protein encoded by LsPAL1 is similar to predictive polypeptides sequences for other PALs. The kinetics of PAL mRNA accumulation is similar to those of induced PAL enzyme activity, with enzyme activity following mRNA accumulation by 12 h. Wound-induced PAL transcripts accumulated in cells close to the wound sites. Tissue printing showed that PAL mRNA was associated with tissue next to the epidermis and vascular bundles. A heterologous PAL protein was expressed in E. coli and was found to show significant PAL activity. [source] Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in cross-protectionPLANT CELL & ENVIRONMENT, Issue 11 2007DORIANA FRANCIA ABSTRACT Many reports point to the existence of a network of regulatory signalling occurring in plants during the interaction with micro-organisms (biotic stress) and abiotic stresses such as wounding. However, the focus is on shared intermediates/components and/or common molecular outputs in differently triggered signalling pathways, and not on the degree and modes of effective influence between abiotic and biotic stresses nor the range of true plant,pathogen interactions open to such influence. We report on local and systemic wound-induced protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles (Botrytis cinerea, Fusarium oxysporum f.sp. lycopersici, Phytophthora capsici and Pseudomonas syringae pv. tomato). The role of ethylene (ET) in the phenomenon and in the induction by wounding of several markers of defense was investigated by using the never-ripe tomato mutant plants impaired in ET perception. We showed that PINIIb, PR1b, PR5, PR7 and peroxidase (POD) are influenced locally and/or systemically by wounding and, with the exception of POD activity, by ET perception. We also demonstrated that ET, although not essential, is positively (B. cinerea, P. capsici) or negatively (F. oxysporum, P. syringae pv. tomato) involved not only in basal but also in wound-induced resistance to each pathogen. [source] Eyelid Tightening and Improved Eyelid Aperture through Nonablative Fractional ResurfacingDERMATOLOGIC SURGERY, Issue 11 2008SEAN A. SUKAL MD BACKGROUND AND OBJECTIVE The effects of fractional resurfacing on eyelid tightening and aperture are unknown. Our purpose was to retrospectively examine the potential for eyelid tightening and eye-aperture opening in patients treated with nonablative fractional resurfacing for facial photorejuvenation. STUDY DESIGN/MATERIALS AND METHODS Fractional laser treatments using a 1,550-nm erbium-doped fiber laser system on the upper and lower eyelids were given at a pulse energy of 17 to 20 mJ at 125 micro-thermal zones (MTZ)/cm2 to a final density of 500 to 750 MTZ/cm2. Each patient had 3 to 7 treatments. Standard pre- and post-treatment photographs were taken at each visit. Physicians who graded 31 preselected patient photographs using a 4-point scale evaluated eyelid tightening. Increase in eyelid aperture was also evaluated. RESULTS All patients had some degree of eyelid tightening; 19% achieved 1% to 25% tightening, 26% achieved 25% to 50%, 26% achieved 50% to 75%, and 29% achieved 75% to 100%. Increase in eyelid aperture was seen in 55.9% of patients. Postoperative wounding, hypopigmentation, hyperpigmentation, persistent erythema, and scarring were not observed. All patients experienced mild or no edema for a few days after treatment. CONCLUSION Fractional resurfacing tightens and increases eyelid aperture without wounding, downtime, or long-term complications. [source] Transmission dynamics of an iridescent virus in an experimental mosquito population: the role of host densityECOLOGICAL ENTOMOLOGY, Issue 4 2005Carlos F. Marina Abstract., 1.,The transmission of insect pathogens cannot be adequately described by direct linear functions of host and pathogen density due to heterogeneity generated from behavioural or physiological traits, or from the spatial distribution of pathogen particles. Invertebrate iridescent viruses (IIVs) can cause patent and lethal infection or a covert sub-lethal infection in insects. Aedes aegypti larvae were exposed to suspensions of IIV type 6 at two densities. High larval density increased the prevalence of aggression resulting in potentially fatal wounding. 2.,The overall prevalence of infection (patent + covert) was positively influenced by host density and increased with exposure time in both densities. The survival time of patently infected insects was extended by , 5 days compared with non-infected insects. 3.,Maximum likelihood models based on the binomial distribution were fitted to empirical results. A model incorporating heterogeneity in host susceptibility by inclusion of a pathogen-free refuge was a significantly better fit to data than an all-susceptible model, indicating that transmission is non-linear. The transmission coefficient (,) did not differ with host density whereas the faction of the population that occupied the pathogen-free refuge (,R) was significantly reduced at high host density compared with the low density treatment. 4.,The transmission of free-living infective stages of an IIV in Ae. aegypti larvae is non-linear, probably because of density-related changes in the frequency of aggressive encounters between hosts. This alters host susceptibility to infection and effectively reduces the proportion of hosts that occupy the pathogen-free refuge. [source] Variation in the risk of being wounded: an overlooked factor in studies of invertebrate immune function?ECOLOGY LETTERS, Issue 6 2003S. J. Plaistow Abstract In invertebrates, wounding can trigger an immune response, and will often expose organisms to parasites and pathogens. Here we show that in the amphipod Gammarus pulex, wounding abundance is negatively correlated with PhenolOxidase activity (a major component of the invertebrate immune response), and that the occurrence and abundance of wounding is extremely high and varies significantly between five natural populations. In some populations the prevalence and abundance of wounds also varied between sexes. Given that, using and maintaining an efficient immune system is costly, we suggest that the frequency of wounding may be an important selective pressure influencing an organism's optimal investment in immune defences. [source] Plant biological warfare: thorns inject pathogenic bacteria into herbivoresENVIRONMENTAL MICROBIOLOGY, Issue 3 2007Malka Halpern Summary Thorns, spines and prickles are among the rich arsenal of antiherbivore defence mechanisms that plants have evolved. Many of these thorns are aposematic, that is, marked by various types of warning coloration. This coloration was recently proposed to deter large herbivores. Yet, the mechanical defence provided by thorns against large herbivores might be only the tip of the iceberg in a much more complicated story. Here we present evidence that thorns harbour an array of pathogenic bacteria that are much more dangerous to herbivores than the painful mechanical wounding by the thorns. Pathogenic bacteria like Clostridium perfringens, the causative agent of the life-threatening gas gangrene, and others, were isolated and identified from date palm (with green-yellow-black aposematic spines) and common hawthorn (with red aposematic thorns). These thorn-inhabiting bacteria have a considerable potential role in antiherbivory, and may have uniquely contributed to the common evolution of aposematism (warning coloration) in thorny plants. [source] Effects of oestrogen agonists on human dermal fibroblasts in an in vitro wounding assayEXPERIMENTAL DERMATOLOGY, Issue 11 2009Susan Stevenson Abstract:, Oestrogen and dehydroepiandrosterone (DHEA) improve wound healing, but circulating levels decline significantly with age. Recently, the selective oestrogen receptor modulators (SERMs) tamoxifen and raloxifene have been shown to improve age-associated impaired wound healing. Therefore, we have evaluated the effects of 17,-oestradiol, ER, and ER, agonists, tamoxifen, raloxifene and DHEA on human dermal fibroblasts using an in vitro wound assay. An ER, agonist, 17,-oestradiol and DHEA all significantly accelerated cell migration; the DHEA effect was blocked with an aromatase inhibitor. Tamoxifen, raloxifene and DHEA all significantly increased DNA synthesis; the DHEA stimulatory effect was reversed by an aromatase inhibitor. This study demonstrates that 17,-oestradiol, an ER, agonist, tamoxifen, raloxifene and DHEA (following conversion to oestrogen) all have significant effects on human fibroblasts, the key mesenchymal cell involved in the wound healing process. Further understanding of the mechanisms involved may have important implications for the management of age-related impaired wound healing. [source] NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco's defense responseFEBS JOURNAL, Issue 19 2010Hao Huang A cDNA library from tobacco inoculated with Rhizoctonia solani was constructed, and several cDNA fragments were identified by differential hybridization screening. One cDNA clone that was dramatically repressed, NtKTI1, was confirmed as a member of the Kunitz plant proteinase inhibitor family. RT-PCR analysis revealed that NtKTI1 was constitutively expressed throughout the whole plant and preferentially expressed in the roots and stems. Furthermore, RT-PCR analysis showed that NtKTI1 expression was repressed after R. solani inoculation, mechanical wounding and salicylic acid treatment, but was unaffected by methyl jasmonate, abscisic acid and NaCl treatment. In vitro assays showed that NtKTI1 exerted prominent antifungal activity towards R. solani and moderate antifungal activity against Rhizopus nigricans and Phytophthora parasitica var. nicotianae. Bioassays of transgenic tobacco demonstrated that overexpression of NtKTI1 enhanced significantly the resistance of tobacco against R. solani, and the antisense lines exhibited higher susceptibility than control lines towards the phytopathogen. Taken together, these studies suggest that NtKTI1 may be a functional Kunitz trypsin inhibitor with antifungal activity against several important phytopathogens in the tobacco defense response. [source] Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrolFEMS YEAST RESEARCH, Issue 1 2003John V.W. Becker Abstract The stilbene resveratrol is a stress metabolite produced by Vitis vinifera grapevines during fungal infection, wounding or UV radiation. Resveratrol is synthesised particularly in the skins of grape berries and only trace amounts are present in the fruit flesh. Red wine contains a much higher resveratrol concentration than white wine, due to skin contact during fermentation. Apart from its antifungal characteristics, resveratrol has also been shown to have cancer chemopreventive activity and to reduce the risk of coronary heart disease. It acts as an antioxidant and anti-mutagen and has the ability to induce specific enzymes that metabolise carcinogenic substances. The objective of this pilot study was to investigate the feasibility of developing wine yeasts with the ability to produce resveratrol during fermentation in both red and white wines, thereby increasing the wholesomeness of the product. To achieve this goal, the phenylpropanoid pathway in Saccharomyces cerevisiae would have to be introduced to produce p -coumaroyl-CoA, one of the substrates required for resveratrol synthesis. The other substrate for resveratrol synthase, malonyl-CoA, is already found in yeast and is involved in de novo fatty-acid biosynthesis. We hypothesised that production of p -coumaroyl-CoA and resveratrol can be achieved by co-expressing the coenzyme-A ligase-encoding gene (4CL216) from a hybrid poplar and the grapevine resveratrol synthase gene (vst1) in laboratory strains of S. cerevisiae. This yeast has the ability to metabolise p -coumaric acid, a substance already present in grape must. This compound was therefore added to the synthetic media used for the growth of laboratory cultures. Transformants expressing both the 4CL216 and vst1 genes were obtained and tested for production of resveratrol. Following ,-glucosidase treatment of organic extracts for removal of glucose moieties that are typically bound to resveratrol, the results showed that the yeast transformants had produced the resveratrol ,-glucoside, piceid. This is the first report of the reconstruction of a biochemical pathway in a heterologous host to produce resveratrol. [source] Circle hooks, ,J' hooks and drop-back time: a hook performance study of the south Florida recreational live-bait fishery for sailfish, Istiophorus platypterusFISHERIES MANAGEMENT & ECOLOGY, Issue 2 2007E. D. PRINCE Abstract, This study evaluates the performance of two types of non-offset circle hooks (traditional and non-traditional) and a similar-sized ,J' hook commonly used in the south Florida recreational live-bait fishery for Atlantic sailfish, Istiophorus platypterus (Shaw). A total of 766 sailfish were caught off south Florida (Jupiter to Key West, FL, USA) to assess hook performance and drop-back time, which is the interval between the fish's initial strike and exertion of pressure by the fisher to engage the hook. Four drop-back intervals were examined (0,5, 6,10, 11,15 and >15 s), and hook performance was assessed in terms of proportions of successful catch, undesirable hook locations, bleeding events and undesirable release condition associated with physical hook damage and trauma. In terms of hook performance, the traditionally-shaped circle hook had the greatest conservation benefit for survival after release. In addition, this was the only hook type tested that performed well during each drop-back interval for all performance metrics. Conversely, ,J' hooks resulted in higher proportions of undesirable hook locations (as much as twofold), bleeding and fish released in undesirable condition, particularly during long drop-back intervals. Non-traditional circle hooks had performance results intermediate to the other hook types, but also had the worst performance relative to undesirable release condition during the first two drop-back intervals. Choice of hook type and drop-back interval can significantly change hook wounding, and different models of non-offset circle hooks should not be assumed to perform equivalently. [source] Geranyl acetate esterase is commonly present but linalyl acetate esterase occurrence is highly limited in plantsFLAVOUR AND FRAGRANCE JOURNAL, Issue 3 2007Neelam S. Sangwan Abstract Esterases are a group of hydrolytic enzymes that split ester bonds by addition of water and are ubiquitously present in diverse biosystems. Although animal esterases are well studied and are catalytically and functionally classified into different groups, plant enzymes have been viewed rather generally and are casually recruited as biochemical markers in morphogenesis, genetic characterization of plants, etc., without functional emphasis. Some volatile oil plants constitutively synthesize their characteristic monoterpene esters, geranyl acetate and linalyl acetate being the most common among them in the acyclic monoterpene class, whereas other plants also synthesize some volatile hemi- to sesquiterpene esters but inductively under certain ecological situations, such as herbivory, wounding, etc. This study concerns screening relative distribution of geranyl acetate esterase and linalyl aceate esterase activities in selected medicinal and aromatic plants, and reveals that in plants geranyl acetate (a primary alcohol ester) esterase is commonly present, while linalyl acetate (a tertiary alcohol ester) esterase seems to be highly limited to those plants (e.g. Lippia alba, Mentha citrata) that biosynthesize the tertiary monoterpene alcohol linalool and its ester. Such contrasting distribution of the two discrete types of esterases has been discussed in light of scenario of their microbial counterparts and structure,function relationships established thereon. This study makes it obvious that the GGG(A)-X motif esterases (acting on tertiary alcohol esters) are rare entities in plants too, similar to microbes. Furthermore, their presence in some volatile oil plants renders such plants novel phytoresources of the GGGX/GGAX motif hydrolases. Detailed characterization of the motif-specific plant esterases would have an immense impact on understanding of their structure,function relationships in plants. Copyright © 2007 John Wiley & Sons, Ltd. [source] Lesion development in stems of rough- and smooth-barked Eucalyptus nitens following artificial inoculations with canker fungiFOREST PATHOLOGY, Issue 3 2001Z. Q. Yuan A study of lesion development in stems of Eucalyptus nitens following artificial inoculations with canker fungi was carried out on 16-year-old plantation trees. In a first trial cambium bark wounds on smooth- and rough-barked trees were inoculated with the mycelium of nine species of canker fungi, including Endothia gyrosa. In a second trial spores or mycelium of E. gyrosa were applied directly onto undamaged or superficially wounded bark surfaces. Infection subsequent to artificial inoculation via wounding (whatever the wounding technique or type of inoculum) resulted in significantly larger external lesions (mean lesion area up to 35.6 cm2 20 months after inoculation) on smooth bark compared with those on rough bark (up to 19.0 cm2). Microscopic studies of infected rough and smooth bark suggest that, once smooth bark is compromised by wounding and artificial inoculation, the particular anatomical structure of smooth bark may offer less mechanical resistance to post-penetration hyphal spread in comparison with rough bark. It is suggested that at a pre-penetration stage under natural conditions spores of E. gyrosa more easily infect rough bark via cracks associated with this type of bark but not present in smooth bark. Développement des lésions sur les troncs d'Eucalyptus nitens àécorce lisse ou rugueuse, après inoculation par des champignons agents de chancre L'étude a été conduite en plantation sur des arbres de 16 ans. Dans un premier essai, des blessures de l'écorce jusqu'au cambium sur des arbres àécorce lisse ou rugueuse, ont été inoculées avec le mycélium de 9 espèces de champignons agents de chancre, dont Endothia gyrosa. Dans un deuxième essai, des spores ou du mycélium de E. gyrosa ont été appliqués directement sur l'écorce intacte ou blessée seulement superficiellement. Quel que soit la technique d'inoculation ou le type d'inoculum, l'infection a été plus importante extérieurement (surface moyenne jusqu'à 35,6 cm2 après 20 mois) chez les écorces lisses que chez les rugueuses (jusqu'à 19,0 cm2). L'étude microscopique des écorces infectées suggérait qu'à condition que l'écorce lisse soit impliquée dans la blessure, sa structure anatomique particulière offre moins de résistance mécanique à la post-pénétration mycélienne que l'écorce rugueuse. Il est suggéré qu'au stade de la pré-pénétration en conditions naturelles, les spores de E. gyrosa infectent plus facilement l'écorce rugueuse à la faveur des fissures qui sont présentes chez ce type d'écorce mais absentes chez les écorces lisses. Entwicklung von Läsionen am Stamm von rauh- und glattrindigen Individuen von Eucalyptus nitens nach künstlicher Inokulation mit krebserregenden Pilzen Es wurde die Entwicklung von Läsionen an Stämmen 16jähriger Eucalyptus nitens -Pflanzungen nach künstlicher Inokulation mit Krebserregern untersucht. In einem ersten Versuch wurden an rauh- und glattrindigen Bäumen Rindenwunden, die bis zum Kambium reichten, mit Myzel von neun Arten krebserregender Pilze, einschliesslich Endothia gyrosa, beimpft. In einem zweiten Versuch wurden Sporen oder Myzel von E. gyrosa direkt auf unverletzte oder nur oberflächlich verletzte Rinde aufgebracht. Künstliche Inokulation von Wunden (unabhängig von der Methode der künstlichen Verwundung oder der Art des Inokulums) führte zu signifikant grösseren, äusseren Wunden auf glatter (durchschnittliche Läsionsfläche 35.6 cm2 20 Monate nach Inokulation) als auf rauher Rinde (bis 19.0 cm2). Mikroskopische Untersuchungen zeigten, dass glatte Rinde gegen die Ausbreitung von Pilzhyphen mechanisch weniger resistent ist als rauhe Rinde. Unter natürlichen Bedingungen dürften dagegen Sporen von E. gyrosa Bäume mit rauher Rinde leichter durch vorhandene Rindenrisse infizieren, die bei glatter Rinde fehlen. [source] Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogensFOREST PATHOLOGY, Issue 2 2000P. C. Evensen Summary Three clones of Norway spruce (Picea abies) were studied for their response to mass-inoculation with the blue-stain fungus Ceratocystis polonica. The effect of different pretreatments (fungal inoculation and wounding) before mass-inoculation was investigated for their possible role in an acquired resistance reaction. Pretreated trees showed enhanced resistance to the subsequent mass-inoculation relative to control trees that received no pretreatment. Furthermore, the fungal colonization of inoculated trees was less than that of wounded trees. The phenolic content of the bark, analysed by RP-HPLC, was compared in trees receiving different treatments. Trees inoculated with C. polonica had higher average concentration of (+)-catechin, taxifolin and trans-resveratrol than wounded trees. Both inoculated and wounded trees had higher average concentrations of these compounds than control trees. The effect of the phenolic extract of Norway spruce bark on the growth of the root rot fungus Heterobasidion annosum and the blue-stain fungi C. polonica and Ophiostoma penicillatum were investigated in vitro. Heterobasidion annosum was not negatively affected, and the extracts had fungistatic effects on the blue-stain fungi. The growth of O. penicillatum was more inhibited than the growth of the more aggressive C. polonica. [source] Comparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing gliaGLIA, Issue 12 2008Elske H.P. Franssen Abstract Olfactory ensheathing glia (OEG) are a specialized type of glia that support the growth of primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. Transplantation of OEG in the injured spinal cord promotes sprouting of injured axons and results in reduced cavity formation, enhanced axonal and tissue sparing, remyelination, and angiogenesis. Gene expression analysis may help to identify the molecular mechanisms underlying the ability of OEG to recreate an environment that supports regeneration in the central nervous system. Here, we compared the transcriptome of cultured OEG (cOEG) with the transcriptomes of cultured Schwann cells (cSCs) and of OEG directly obtained from their natural environment (nOEG), the olfactory nerve layer of adult rats. Functional data mining by Gene Ontology (GO)-analysis revealed a number of overrepresented GO-classes associated with tissue repair. These classes include "response to wounding," "blood vessel development," "cell adhesion," and GO-classes related to the extracellular matrix and were overrepresented in the set of differentially expressed genes between both comparisons. The current screening approach combined with GO-analysis has identified distinct molecular properties of OEG that may underlie their efficacy and interaction with host tissue after implantation in the injured spinal cord. These observations can form the basis for studies on the function of novel target molecules for therapeutic intervention after neurotrauma. © 2008 Wiley-Liss, Inc. [source] Intravital insights in skin wound healing using the mouse dorsal skin fold chamberJOURNAL OF ANATOMY, Issue 6 2007Heiko Sorg Abstract The skin fold chamber is one of the most accepted animal models for studying the microcirculation both in health and disease. Here we describe for the first time the alternative use of the skin fold chamber in mice for intravital microscopic investigation of skin regeneration after creating a full dermal thickness wound. The dorsal skin fold chamber was implanted in hairless SKH1-hr mice and a full dermal thickness wound (area ~4 mm2) was created. By means of intravital fluorescence microscopy, the kinetics of wound healing were analyzed for 12 days post wounding with assessment of epithelialization and nutritive perfusion. The morphology of the regenerating skin was characterized by hematoxylin-eosin histology and immunohistochemistry for proliferation and microvessel density. The model allows the continuous visualization of wound closure with complete epithelialization at day 12. Furthermore, a sola cutis se reficientis could be described by an inner circular ring of vessels at the wound margin surrounded by outer radial passing vessels. Inner circular vessels presented initially with large diameters and matured towards diameters of less than 15 µm for conversion into radial spreading outer vessels. Furthermore, wound healing showed all diverse core issues of skin repair. In summary, we were able to establish a model for the analysis of microcirculation in the healing skin of the mouse. This versatile model allows distinct analysis of new vessel formation and maturation in regenerating skin as well as evaluation of skin healing under different pathologic conditions. [source] Effects of systemic potato response to wounding and jasmonate on the aphid Macrosiphum euphorbiae (Sternorryncha: Aphididae)JOURNAL OF APPLIED ENTOMOLOGY, Issue 7 2010L. Brunissen Abstract Plant induced responses are activated by multiple biotic and abiotic stresses, and may affect the interactions between a plant and phytophagous insects. The objective of this work was to evaluate the effects of different stresses inflicted to potato plants (Solanum tuberosum) on the potato aphid (Macrosiphum euphorbiae). Abiotic wounding, biotic wounding by Leptinotarsa decemlineata and treatment with volatile methyl jasmonate (MeJA) were evaluated with regard to the orientation behaviour, the feeding behaviour and the development of the potato aphids. Dual-choice olfactometry showed that plants treated with MeJA lost their attractiveness for the potato aphids, while both abiotic and biotic wounding did not alter the orientation of aphids. Electropenetrography revealed that the feeding behaviour of aphids was only slightly disturbed by a previous L. decemlineata wounding, while it was highly disturbed by mechanical wounding and MeJA treatment. Aphid nymph survival was reduced on mechanically wounded plants, the pre-reproductive period was lengthened and the fecundity reduced on plants treated with MeJA. Our results bring new information about the effects of various stresses inflicted to S. tuberosum on M. euphorbiae. We showed that wounding and MeJA treatment induced an antixenosis resistance in potato plants against M. euphorbiae, which may influence aphid colonization processes. [source] Upregulation of gamma-2 laminin-332 in the mouse ear vesicant wound model,JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2009Yoke-Chen Chang Abstract Epithelial cell migration during wound healing is regulated in part by enzymatic processing of laminin-332 (formerly LN-5), a heterodimer formed from ,, ,, and , polypeptide chains. Under static conditions, laminin-332 is secreted into the extracellular matrix as a proform and has two chains processed to smaller forms, allowing it to anchor epithelial cells to the basement membrane of the dermis. During incisional wounding, laminin ,2 chains in particular are processed to smaller sizes and function to promote epithelial sheet migration over the wound bed. The present study examines whether this same function occurs following chemical injury. The mouse ear vesicant model (MEVM) was used to follow the pathology in the ear and test whether processed laminin-332 enhances epithelial cell migration. Skin biopsies of sulfur mustard (SM) exposed ears for several time points were analyzed by histology, immunohistochemistry, real-time PCR, and Western blot analysis. SM exposure greatly increased mRNA levels for laminin-,2 in comparison to the other two chains. Protein production of laminin-,2 was upregulated, and there was an increase in the processed forms. Protein production was in excess of the amount required to form heterotrimeric laminin-332 and was associated with the migrating epithelial sheet, suggesting a potential role in wound healing for monomeric laminin-,2. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:172,184, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20275 [source] Nicotine inhibits human gingival fibroblast migration via modulation of Rac signalling pathwaysJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 12 2005Yiyu Fang Abstract Aim: Cigarette smoking is a risk factor in the development of periodontal diseases. In addition, a delayed healing process has been shown in smokers compared with non-smokers after periodontal treatment. Cell migration is a key process of wound healing and it is highly regulated by a variety of signalling pathways. The small G protein, Rac, is necessary for cell migration. Our aim was to determine if nicotine disrupted Rac and its downstream signalling proteins, p21-activated kinase 1/2 (PAK1/2), and p44/42 mitogen-activated protein kinase (MAPK) (extracellular regulated kinase 1/2). Material and Methods: Primary human fibroblasts from healthy gingival tissues were cultured and grown to confluence. Cells were serum starved for 24 h, and then treated with nicotine (0 or 0.5 ,M) prior to in vitro wounding. Cell migration was analysed in live cell assays following in vitro wounds. Rac activity, phosphorylation levels of PAK1/2, and p44/42 MAPK were assessed in cultures treated with or without nicotine after multiple wounds. Results: Nicotine decreased cell migration rates by 50% compared with controls. In addition, nicotine altered the activation patterns of Rac and PAK 1/2 and up-regulated p44/42 MAPK. Conclusion: Decreased cell migration in periodontal wounds exposed to nicotine may be mediated through the Rac and PAK1/2 signalling pathways. [source] A Novel Mitogen-Activated Protein Kinase Gene in Maize (Zea mays), ZmMPK3, is Involved in Response to Diverse Environmental CuesJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2010Jinxiang Wang In search for components of mitogen-activated protein kinase (MAPK) cascades in maize (Zea mays) involved in response to abscisic acid (ABA) stimulus, a novel MAPK gene, ZmMPK3, from ABA-treated maize leaves cDNA was isolated and characterized. The full length of the ZmMPK3 gene is 1 520 bp and encodes a 376 amino acid protein with a predicted molecular mass of 43.5 kD and a pI of 5.83. ZmMPK3 contains all 11 MAPK conserved subdomains and the phosphorylation motif TEY. Amino acid sequence alignment revealed that ZmMPK3 shared high identity with group-A MAPK in plants. A time course (30,360 min) experiment using a variety of signal molecules and stresses revealed that the transcripts level of ZmMPK3 accumulated markedly and rapidly when maize seedlings were subjected to exogenous signaling molecules: ABA, H2O2, jasmonic acid and salicylic acid, various abiotic stimuli such as cold, drought, ultraviolet light, salinity, heavy metal and mechanical wounding. Its transcription was also found to be tissue-specific regulated. Here, we show that ABA and H2O2 induced a significant increase in the ZmMPK3 activity using immunoprecipitation and in-gel kinase assay. Furthermore, the results showed that the ZmMPK3 protein is localized mainly to the nucleus. These results suggest that the ZmMPK3 may play an important role in response to environmental stresses. [source] Overexpression of the Wounding-Responsive Gene AtMYB15 Activates the Shikimate Pathway in ArabidopsisJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 9 2006Yanhui Chen Abstract The MYB transcription factor genes play important roles in many developmental processes and various defense responses of plants. The shikimate pathway is a major biosynthetic pathway for the production of three aromatic amino acids and other aromatic compounds that are involved in multiple responses of plants, including protection against UV and defense. Herein, we describe the characterization of the R2R3-MYB gene AtMYB15 as an activator of the shikimate pathway in Arabidopsis. The AtMYB15 protein is nuclear localized and a transcriptional activation domain is found in its C-terminal portion. Northern blots showed that AtMYB15 is an early wounding-inducible gene. Resutls of microarray analysis, confirmed using quantitative real-time polymerase chain reaction, showed that overexpression of AtMYB15 in transgenic plants resulted in elevated expression of almost all the genes involved in the shikimate pathway. Bioinformatics analysis showed that one or more AtMYB15-binding AC elements were detected in the promoters of these upregulated genes. Furthermore, these genes in the shikimate pathway were also found to be induced by wounding. These data suggest an important role of AtMYB15 as a possible direct regulator of the Arabidopsis shikimate pathway in response to wounding. (Managing editor: Ya-Qin Han) [source] Investigating the nature of expressiveness in stranger, acquaintance and intrafamilial homicidesJOURNAL OF INVESTIGATIVE PSYCHOLOGY AND OFFENDER PROFILING, Issue 3 2005Stephanie K. Last Abstract This study explores the role of the victim,offender relationship in the dynamics of homicide, by examining the crime scene behaviour of 25 intrafamilial, 30 acquaintance and 27 stranger homicide offenders (n = 82). Six crime scene variables were examined: ,Weapon from the scene', ,Excessive wounding', ,Facial trauma', ,Multiple wounds to a single area', ,Post-mortem activity' and ,Manual violence'. The first objective was to identify whether these variables could be combined to form a partially ordered scale of expressiveness. The second was to examine whether the nature of this expressive crime scene varied according to the victim and offender relationship. It was hypothesised that the intrafamilial homicides would be characterised by a more expressive crime scene. This was examined by Partial Order Scalogram Analysis which supported the hypothesised link between the level of expressed emotion evident in the crime scene and the nature of the victim,offender relationship. Further analysis on the individual variables revealed that the best single predictor of the relationship between victim and offender was the presence of multiple wounding. These findings are discussed both as contributing to a theoretical understanding of the emotional salience of crime scene actions when killing a family member, and in practical terms in relation to the significance of these variables for both police investigations and clinical interventions with homicide perpetrators. Copyright © 2005 John Wiley & Sons, Ltd. [source] Ethanol Treatment Reduces Bovine Bronchial Epithelial Cell MigrationALCOHOLISM, Issue 4 2005John R. Spurzem Background: Chronic ethanol abuse is associated with significant lung disease. Excessive alcohol intake increases risk for a variety of respiratory tract diseases, including pneumonia and bronchitis. Damage to airway epithelium is critical to the pathogenesis of airway disorders such as chronic bronchitis and chronic obstructive pulmonary disease. The ability of the airway epithelium to repair itself is an important step in the resolution of airway inflammation and disease. Ethanol exposure is known to modulate signaling systems in bronchial epithelial cells. We hypothesize that chronic ethanol exposure down-regulates the adenosine 3,:5,-cyclic monophosphate signaling cascade in airway epithelial cells, resulting in decreased epithelial cell migration and repair. Methods: We evaluated the effect of ethanol on primary cultures of bovine bronchial epithelial cells in in vitro models of cell migration, wound repair, cell attachment, and cell spreading. Results: Ethanol causes a concentration-dependent effect on closure of mechanical wounds in cell monolayers. Pretreatment of cells with 100 mm ethanol for 24 hr further slows wound closure. Ethanol pretreatment also reduced the protein kinase A response to wounding and made the cells unresponsive to stimuli of protein kinase A that accelerate wound closure. The effects of ethanol on cell migration in wound closure were confirmed in another assay of migration, the Boyden chamber cell migration assay. Prolonged treatment with ethanol also reduced other cell functions, such as spreading and attachment, which are necessary for epithelial repair. Conclusions: Ethanol modulates signaling systems that are relevant to airway injury and repair, suggesting that chronic, heavy ethanol ingestion has a detrimental impact on airway repair. Impaired response to inflammation and injury may contribute to chronic airway disease. [source] Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissuesMOLECULAR MICROBIOLOGY, Issue 3 2009Maria Antunez-Lamas Summary Jasmonate is a key signalling compound in plant defence that is synthesized in wounded tissues. In this work, we have found that this molecule is also a strong chemoattractant for the phythopathogenic bacteria Dickeya dadantii (ex- Erwinia chysanthemi). Jasmonic acid induced the expression of a subset of bacterial genes possibly involved in virulence/survival in the plant apoplast and bacterial cells pre-treated with jasmonate showed increased virulence in chicory and Saintpaulia leaves. We also showed that tissue wounding induced bacterial spread through the leaf surface. Moreover, the jasmonate-deficient aos1 Arabidopsis thaliana mutant was more resistant to bacterial invasion by D. dadantii than wild-type plants. These results are consistent with the hypothesis that sensing jasmonic acid by this bacterium helps the pathogen to ingress inside plant tissues. [source] cDNA-AFLP reveals genes differentially expressed during the hypersensitive response of cassavaMOLECULAR PLANT PATHOLOGY, Issue 2 2005BENJAMIN P. KEMP SUMMARY The tropical staple cassava is subject to several major diseases, such as cassava bacterial blight, caused by Xanthomonas axonopodis pv. manihotis. Disease-resistant genotypes afford the only practical solution, yet despite the global importance of this crop, little is known about its defence mechanisms. cDNA-AFLP was used to isolate cassava genes differentially expressed during the hypersensitive reaction (HR) of leaves in response to an incompatible Pseudomonas syringae pathovar. Seventy-eight transcript-derived fragments (TDFs) showing differential expression (c. 75% up-regulated, 25% down-regulated) were identified. Many encoded putative homologues of known defence-related genes involved in signalling (e.g. calcium transport and binding, ACC oxidases and a WRKY transcription factor), cell wall strengthening (e.g. cinnamoyl coenzyme A reductase and peroxidase), programmed cell death (e.g. proteases, 26S proteosome), antimicrobial activity (e.g. proteases and ,-1,3-glucanases) and the production of antimicrobial compounds (e.g. DAHP synthase and cytochrome P450s). Full-length cDNAs including a probable matrix metalloprotease and a WRKY transcription factor were isolated from six TDFs. RT-PCR or Northern blot analysis showed HR-induced TDFs were maximally expressed at 24 h, although some were produced by 6 h; some were induced, albeit more slowly, in response to wounding. This work begins to reveal potential defence-related genes of this understudied, major crop. [source] Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathwaysMOLECULAR PLANT PATHOLOGY, Issue 5 2000Katrin Beßer Salicylic acid (SA) and its synthetic mimics 2,6-dichloroisonicotinic acid (DCINA) and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), protect barley systemically against powdery mildew (Blumeria graminis f.sp. hordei, Bgh) infection by strengthening plant defence mechanisms that result in effective papillae and host cell death. Here, we describe the differential expression of a number of newly identified barley chemically induced (BCI) genes encoding a lipoxygenase (BCI-1), a thionin (BCI-2), an acid phosphatase (BCI-3), a Ca2+ -binding EF-hand protein (BCI-4), a serine proteinase inhibitor (BCI-7), a fatty acid desaturase (BCI-8) and several further proteins with as yet unknown function. Compared with SA, the chemicals DCINA and BTH were more potent inducers of both gene expression and resistance. Homologues of four BCI genes were detected in wheat and were also differentially regulated upon chemical activation of disease resistance. Except for BCI-4 and BCI-5 (unknown function), the genes were also induced by exogenous application of jasmonates, whereas treatments that raise endogenous jasmonates as well as wounding were less effective. The fact that BCI genes were not expressed during incompatible barley,Bgh interactions governed by gene-for-gene relationships suggests the presence of separate pathways leading to powdery mildew resistance. [source] A role for PSK signaling in wounding and microbial interactions in ArabidopsisPHYSIOLOGIA PLANTARUM, Issue 4 2010Maaria Loivamäki PSK- , is a disulfated peptide that acts as a growth factor in plants. PSK- , is derived from preproproteins which are encoded by five PSK precursor genes in Arabidopsis thaliana (L.) Heynh and is perceived by leucine-rich repeat receptor kinases. Arabidopsis has two PSK receptor genes, PSKR1 and PSKR2. Although ligand and receptor are well characterized, the biological functions of PSK signaling are not well understood. Using reporter lines and receptor knockout mutants of Arabidopsis, a role for PSK signaling in biotic interactions and in wounding was analyzed. Treatment of Arabidopsis leaves with the fungal elicitor E-Fol, or the fungal pathogens Alternaria brassicicola and Sclerotinia sclerotiorum resulted in induction of PSK2 and PSKR1 as shown by promoter:GUS analysis. Wounding of hypocotyls or leaves induced PSK3:GUS, PSK5:GUS and PSKR1:GUS expression indicating that PSK precursor genes are differentially regulated in response to specific stresses. The receptor knockout lines pskr1-3 and pskr2-1 showed significantly reduced photosynthesis in response to the fungal elicitor E-Fol which indicates that fungal defence is impaired. pskr1-3 plants further showed reduced growth of crown galls after infection with Agrobacterium tumefaciens. A role for PSK signaling in Agrobacterium tumefaciens tumor growth was supported by the finding that PSK precursor genes and PSKR1 are expressed in crown galls. Overall, the results indicate that PSK signaling may play a previously undescribed role in pathogen or herbivore interactions and is crucial for Agrobacterium -induced cell proliferation in crown gall formation. [source] Effects of progressive drought stress on the expression of patatin-like lipid acyl hydrolase genes in Arabidopsis leavesPHYSIOLOGIA PLANTARUM, Issue 1 2008Ana Rita Matos Patatin-like genes have recently been cloned from several plant species and found to be involved in stress responses and development. In previous work, we have shown that a patatin-like gene encoding a galactolipid acyl hydrolase (EC 3.1.1.26) was stimulated by drought in the leaves of the tropical legume, Vigna unguiculata L. Walp. The aim of the present work was to study the expression of patatin-like genes in Arabidopsis thaliana under water deficit. Expression of six genes was studied by reverse transcriptase polymerase chain reaction in leaves of plants submitted to progressive drought stress induced by withholding water and also in different plant organs. Three genes, designated AtPAT IIA, AtPAT IVC and AtPAT IIIA, were shown to be upregulated by water deficit but with different kinetics, while the other patatin-like genes were either constitutive or not expressed in leaves. The accumulation of transcripts of AtPAT IIA in the early stages of the drought treatment was coordinated with the upregulation of lipoxygenase and allene oxide synthase genes. AtPAT IIA expression was also induced by wounding and methyl jasmonate treatments. The in vitro lipolytic activity toward monogalactosyldiacylglycerol, digalactosyldiacylglycerol, phosphatidylcholine and phosphatidylglycerol was confirmed by producing the recombinant protein ATPAT IIA in insect cells. The analysis of free fatty acid pools in drought-stressed leaves shows an increase in the relative amounts of trans-3-hexadecenoic acid at the beginning of the treatment followed by a progressive accumulation of linoleic and linolenic acids. The possible roles of AtPAT IIA in lipid signaling and membrane degradation under water deficit are discussed. [source] Catalase inhibition alters suberization and wound healing in potato (Solanum tuberosum) tubersPHYSIOLOGIA PLANTARUM, Issue 3 2007Mohammed Bajji In response to wounding, potato (Solanum tuberosum L.) tubers generate hydrogen peroxide (H2O2) in association with suberization, a critical phase of the wound-healing process. In the present study, the effect of aminotriazole (AT), a catalase (CAT, EC 1.11.1.6) inhibitor, on cut tubers was investigated using fresh weight (FW) loss and pathogen attack symptoms as indicators of wound-healing efficiency. Seven days after treatment, AT-treated tuber halves lost more FW and developed infection signs compared with the controls. Thiourea, another CAT inhibitor, as well as exogenous H2O2 treatments induced the same effects as AT suggesting that the alteration of the wound healing may be caused by CAT inhibition and the resulting accumulation of H2O2. Using transgenic tubers, FW losses 1 week after wounding were either higher (CAT repression) or lower (CAT overexpression) than those of the wild-type. When tuber halves were allowed to wound heal for different periods before treatment, AT had no effect on the progress of their wound healing if wound-healed for at least 3 days. This implies that AT may affect early wound-healing-related events, especially those occurring before or during suberization. A time-course analysis of the effects of AT treatment on wounded tuber tissues revealed that AT prevented the deposition of the polyphenolic domain of suberin in association with CAT inhibition and H2O2 accumulation. These data are important in identifying factors that may be required to regulate suberization and contribute to a better understanding of this critical process to hasten its rate and limit wound-related losses in stored potato tubers. [source] |