Wound Fluid (wound + fluid)

Distribution by Scientific Domains


Selected Abstracts


Neutrophil elastase in pressure ulcer fluid degrades fibronectin in the exudates

GERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 3 2004
Shingo Ai
Background: Pressure ulcers are classified as chronic wounds, which do not heal in a timely fashion. Fibronectin is condensed in granulation tissue, and essential glycoprotein of wound healing. It has been proposed that fibronectin degradation may be involved in delaying wound healing. We have investigated whether pressure ulcer fluid (PUF) contains degraded fibronectin. In addition, we tried to identify the proteinase which contributes to fibronectin degradation in PUF. Methods: Fibronectin degradation and the presence of neutrophil elastase (NE) in PUF were determined by immunoblot analysis. Fibronectin degradation activity in PUF was determined in the presence of various proteinase inhibitors. NE activity was assessed using NE specific substrate. Results: Immunoblot analysis revealed that degraded fibronectin was observed in PUF samples but not in acute wound fluid (AWF). The PUF contained a proteinase capable of degrading freshly added fibronectin and its activity in PUF was blocked by a broad-spectrum serine proteinase inhibitor or sivelestat, a specific neutrophil elastase inhibitor, but not by metalloproteinase and cysteine proteinase inhibitors. Immunoblot analysis of PUF using an antineutrophil elastase antibody revealed that neutrophil elastase was detected as three bands at molecular weights of ,30 kDa, ,38 kDa, and ,54 kDa, indicating that neutrophil elastase in the exudates existed not only as free monomers, but also in polymers or complexes with other molecules. Conclusion: These results suggest that PUF contains a high level of neutrophil elastase which may be involved in the delay of the healing of pressure ulcer through the fibronectin degradation. [source]


Extracellular matrix metabolites as potential biomarkers of disease activity in wound fluid: lessons learned from other inflammatory diseases?

BRITISH JOURNAL OF DERMATOLOGY, Issue 3 2004
R. Moseley
Summary The new era of pharmacogenetics has identified a potential for individuals to receive customized treatments for a variety of disease states. For such individualized treatments to fulfil their potential, it will be essential for clinicians to be able to monitor disease activity, ideally in a rapid, noninvasive fashion. The accessibility of the skin offers much potential to develop noninvasive tests of metabolic and disease activity for clinical use. Impaired human wound healing in the skin is a chronic inflammatory disorder in which the development of such tests has considerable potential, aiding clinical decision making and monitoring responses to treatment. This review article discusses how studies in other human diseases have highlighted potential biochemical markers (biomarkers) of disease activity in secreted biofluids, as aids to determining disease and metabolic activity within tissues. Using, as examples, lessons learned in the study of disease activity and prognosis of other chronic inflammatory conditions, such as osteoarthritis and periodontal disease, this review highlights the potential of dermal extracellular matrix (ECM) components (collagens, proteoglycans, hyaluronan and glycoproteins) for such uses. The limitations of currently utilized techniques and the concept that analysis of ECM components in wound fluid may represent useful biomarkers of disease activity are also discussed. [source]


Detection of human neutrophil elastase with peptide-bound cross-linked ethoxylate acrylate resin analogs

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 4 2005
J.V. Edwards
Abstract:, An assessment of elastase-substrate kinetics and adsorption at the solid,liquid interface of peptide-bound resin was made in an approach to the solid-phase detection of human neutrophil elastase (HNE), which is found in high concentration in chronic wound fluid. N-succinyl-alanine-alanine-proline-valine- p -nitroanilide (suc-Ala-Ala-Pro-Val- pNA), a chromogenic HNE substrate, was attached to glycine-cross-linked ethoxylate acrylate resins (Gly-CLEAR) by a carbodiimide reaction. To assess the enzyme-substrate reaction in a two-phase system, the kinetic profile of resin-bound peptide substrate hydrolysis by HNE was obtained. A glycine and di-glycine spacer was placed between the resin polymer and substrate to assess the steric and spatial requirements of resin to substrate with enzyme hydrolysis. The enzymatic activities of suc-Ala-Ala-Pro-Val- pNA and suc-Ala-Ala-Pro-Ala- pNA on the solid-phase resin were compared with similar analogs in solution. An increase in visible wavelength absorbance was observed with increasing amounts of substrate-resin and enzyme concentration. Enzyme hydrolysis of the resin-bound substrate was also demonstrated on a polypropylene surface, which was employed for visible absorbance of released chromophore. A soluble active substrate analog was released from the resin through saponification of the ethoxylate ester linkages in the resin polymer. The resin-released conjugate of the HNE substrate demonstrated an increased dose response with increasing enzyme concentration. The synthesis and assay of elastase substrates bound to CLEAR resin gives an understanding of substrate-elastase adsorption and activity at the resin's solid,liquid interface for HNE detection with a solid-phase peptide. [source]