Home About us Contact | |||
Wind Dispersal (wind + dispersal)
Selected AbstractsPost-Hypsithermal plant disjunctions in western Alberta, CanadaJOURNAL OF BIOGEOGRAPHY, Issue 3 2003W. L Strong Abstract Aim, Evaluate the hypothesis that nine disjunct vascular plant species along the eastern slopes of the Rocky Mountains and in the Peace River District of west-central Alberta represent remnants of more southerly vegetation that occupied these areas during the Holocene Hypsithermal (9000,6000 yr bp). Alternatively, these plants represent populations that became established because of independent chance dispersal events. Location, This study focuses on the area east of the Rocky Mountain Continental Divide in the Province of Alberta and the State of Montana in western Canada and USA, respectively. Methods, Disjunct species were identified and their distributions mapped based on a review of occurrence maps and records, botanical floras and checklists, herbaria specimens, ecological and botanical studies, and field surveys of selected species. A disjunct species was defined as a plant population separated from its next nearest occurrence by a distance of > 300 km. Evaluation of the hypothesis was based on a review of published and unpublished pollen stratigraphy and palaeoecological studies. The potential geographical distribution of Hypsithermal vegetation was based on modern regional-based ecosystem mapping and associated monthly temperature summaries as well as future climatic warming models. Results, The hypothesis was compatible with Holocene pollen stratigraphy, Hypsithermal permafrost and fen occurrence, and palaeosol phytolith analyses; and future global climatic warming models. Modelled regional Hypsithermal vegetation based on a 1 °C increase in July temperatures relative to current conditions, indicated that much of the boreal forest zone in Alberta could have been grassland, which would explain the occurrence of Prairie species in the Peace River District. This amount of latitudinal vegetation shift (6.5°) was similar to an earlier Hypsithermal permafrost zone location study. An equivalent shift in vegetation along the eastern Cordillera would have placed south-western Montana-like vegetation and species such as Boykinia heucheriformis (Rydb.) Rosend. and Saxifraga odontoloma Piper within the northern half of the Rocky Mountains and foothills in Alberta, which represents the location of modern-day disjunct populations of these species. Main conclusions, Warmer and drier climatic conditions during the Holocene Hypsithermal resulted in the northward displacement of vegetation zones relative to their current distribution patterns. Most of Alberta was probably dominated by grasslands during this period, except the Rocky Mountains and northern highlands. Modern-day species disjunctions within the Rocky Mountains and Peace River District as well as more northerly areas such as the Yukon Territory occurred when the vegetation receded southward in response to climatic cooling after the Hypsithermal. Wind dispersal was considered an unlikely possibility to explain the occurrence of the disjunct species, as most of the plants lack morphological adaptations for long distance transport and the prevailing winds were from west to east rather than south to north. However, consumption and transport of seeds by northward migrating birds could not be excluded as a possibility. [source] Wind dispersal in freshwater wetlands: Knowledge for conservation and restorationAPPLIED VEGETATION SCIENCE, Issue 2 2006Merel B. Soons van der Meijden (1990) for taxa; Schaminée et al. (1995; 1996) and Stortelder et al. (1999) for syntaxa Abstract Questions: For wetland plants, dispersal by wind is often overlooked because dispersal by water is generally assumed to be the key dispersal process. This literature review addresses the role of seed dispersal by wind in wetlands. Why is wind dispersal relevant in wetlands? Which seeds are dispersed by wind and how far? And how can our understanding of wind dispersal be applied to wetland conservation and restoration? Methods: Literature review. Results and conclusions: Wind is a widely available seed dispersal vector in wetlands and can transport many seeds over long distances. Unlike water, wind can transport seeds in all directions and is therefore important for dispersal to upstream wetlands and to wetlands not connected by surface water flows. Wind dispersal transports seeds to a wider range of sites than water, and therefore reaches more sites but with lower seed densities. Many wetland plant species have adaptations to facilitate wind dispersal. Dispersal distances increase with decreasing falling velocity of seeds, increasing seed release height and selective release mechanisms. Depending on the adaptations, seeds may be dispersed by wind over many km or only a few m. The frequency of long-distance wind dispersal events depends on these adaptations, the number of produced seeds, the structure of the surrounding vegetation, and the frequency of occurrence of suitable weather conditions. Humans reduce the frequency of successful long-distance wind dispersal events in wetlands through wetland loss and fragmentation (which reduce the number and quality of seeds) and eutrophication (which changes the structure of the vegetation so that seed release into the wind flow becomes more difficult). This is yet another reason to focus on wetland conservation and restoration measures at increased population sizes, prevention of eutrophication, and the restoration of sites at short distances from seed sources. [source] Climate change affects colonization dynamics in a metacommunity of three Daphnia speciesGLOBAL CHANGE BIOLOGY, Issue 6 2008FLORIAN ALTERMATT Abstract Climate change is expected to alter the range and abundance of many species by influencing habitat qualities. For species living in fragmented populations, not only the quality of the present patches but also access to new habitat patches may be affected. Here, we show that colonization in a metacommunity can be directly influenced by weather changes, and that these observed weather changes are consistent with global climate change models. Using a long-term dataset from a rock pool metacommunity of the three species Daphnia magna, Daphnia longispina and Daphnia pulex with 507 monitored habitat patches, we correlated a four-fold increase in colonization rate with warmer, drier weather for the period from 1982 to 2006. The higher colonization rate after warm and dry summers led to an increase in metacommunity dynamics over time. A mechanistic explanation for the increased colonization rate is that the resting stages have a higher exposure to animal and wind dispersal in desiccated rock pools. Although colonization rates reacted in the same direction in all three species, there were significant species-specific effects that resulted in an overall change in the metacommunity composition. Increased local instability and colonization dynamics may even lead to higher global stability of the metacommunity. Thus, whereas climate change has been reported to cause a unidirectional change in species range for many other species, it changes the dynamics and composition of an entire community in this metacommunity, with winners and losers difficult to predict. [source] Surviving climate changes: high genetic diversity and transoceanic gene flow in two arctic,alpine lichens, Flavocetraria cucullata and F. nivalis (Parmeliaceae, Ascomycota)JOURNAL OF BIOGEOGRAPHY, Issue 8 2010József Geml Abstract Aim, We examined genetic structure and long-distance gene flow in two lichenized ascomycetes, Flavocetraria cucullata and Flavocetraria nivalis, which are widespread in arctic and alpine tundra. Location, Circumpolar North. Methods, DNA sequences were obtained for 90 specimens (49 for F. cucullata and 41 for F. nivalis) collected from various locations in Europe, Asia and North America. Sequences of the nuclear internal transcribed spacer (ITS) + 5.8S ribosomal subunit gene region were generated for 89 samples, and supplemented by beta-tubulin (BTUB) and translation elongation factor 1-alpha gene (EF1) sequences for a subset of F. cucullata specimens. Phylogenetic, nonparametric permutation methods and coalescent analyses were used to assess population divergence and to estimate the extent and direction of migration among continents. Results, Both F. cucullata and F. nivalis were monophyletic, supporting their morphology-based delimitation, and had high and moderately high intraspecific genetic diversity, respectively. Clades within each species contained specimens from both North America and Eurasia. We found only weak genetic differentiation among North American and Eurasian populations, and evidence for moderate to high transoceanic gene flow. Main conclusions, Our results suggest that both F. cucullata and F. nivalis have been able to migrate over large distances in response to climatic fluctuations. The high genetic diversity observed in the Arctic indicates long-term survival at high latitudes, whereas the estimated migration rates and weak geographic population structure suggest a continuing long-distance gene flow between continents that has prevented pronounced genetic differentiation. The mode of long-distance dispersal is unknown, but wind dispersal of conidia and/or ascospores is probably important in the open arctic landscapes. The high genetic diversity and efficient long-distance dispersal capability of F. cucullata and F. nivalis suggest that these species, and perhaps other arctic lichens as well, will be able to track their potential niche in the changing Arctic. [source] Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbsJOURNAL OF ECOLOGY, Issue 6 2005M. B. SOONS Summary 1Although habitat loss and fragmentation are assumed to threaten the regional survival of plant species, their effects on regional species dynamics via seed dispersal and colonization have rarely been quantified. 2We assessed the impact of habitat loss and fragmentation on the connectivity, and hence regional survival, of wind-dispersed plant species of nutrient-poor semi-natural grasslands. We did this using a new approach to relate quantified habitat loss and fragmentation to quantified colonization capacity. 3We quantified loss and fragmentation during the 20th century of moist, nutrient-poor semi-natural grasslands in study areas in the Netherlands, as well as their current distribution. After testing how well the habitat distribution matches species distributions of two wind-dispersed grassland forbs (Cirsium dissectum, representative of species with long-distance wind dispersal, and Succisa pratensis, representative of species with short-distance wind dispersal), we combined the habitat distribution data with simulated seed dispersal kernels in order to quantify the impact on connectivity. 4Habitat loss and fragmentation has dramatically reduced both the area (by 99.8%) and the connectivity of the grasslands. The remaining grasslands are practically isolated for seeds dispersed by wind, even for species with high wind dispersal ability (for which, interestingly, connectivity by wind dispersal decreased most). Linear landscape elements hardly contribute to connectivity by wind dispersal. Regional survival of the studied species has become completely dependent on the survival of a few large populations in nature reserves. Other remaining populations are decreasing in number and size and have low colonization capacity. 5Habitat loss and fragmentation have drastically changed the regional species dynamics of wind-dispersed plant species, indicating that it is of utmost importance to preserve remaining populations in nature reserves and that the probability of colonization of new or restored sites is very low, unless the sites are adjacent to occupied sites or dispersal is artificially assisted. [source] Wind dispersal in freshwater wetlands: Knowledge for conservation and restorationAPPLIED VEGETATION SCIENCE, Issue 2 2006Merel B. Soons van der Meijden (1990) for taxa; Schaminée et al. (1995; 1996) and Stortelder et al. (1999) for syntaxa Abstract Questions: For wetland plants, dispersal by wind is often overlooked because dispersal by water is generally assumed to be the key dispersal process. This literature review addresses the role of seed dispersal by wind in wetlands. Why is wind dispersal relevant in wetlands? Which seeds are dispersed by wind and how far? And how can our understanding of wind dispersal be applied to wetland conservation and restoration? Methods: Literature review. Results and conclusions: Wind is a widely available seed dispersal vector in wetlands and can transport many seeds over long distances. Unlike water, wind can transport seeds in all directions and is therefore important for dispersal to upstream wetlands and to wetlands not connected by surface water flows. Wind dispersal transports seeds to a wider range of sites than water, and therefore reaches more sites but with lower seed densities. Many wetland plant species have adaptations to facilitate wind dispersal. Dispersal distances increase with decreasing falling velocity of seeds, increasing seed release height and selective release mechanisms. Depending on the adaptations, seeds may be dispersed by wind over many km or only a few m. The frequency of long-distance wind dispersal events depends on these adaptations, the number of produced seeds, the structure of the surrounding vegetation, and the frequency of occurrence of suitable weather conditions. Humans reduce the frequency of successful long-distance wind dispersal events in wetlands through wetland loss and fragmentation (which reduce the number and quality of seeds) and eutrophication (which changes the structure of the vegetation so that seed release into the wind flow becomes more difficult). This is yet another reason to focus on wetland conservation and restoration measures at increased population sizes, prevention of eutrophication, and the restoration of sites at short distances from seed sources. [source] The impact of site conditions and seed dispersal on restoration success in alluvial meadowsAPPLIED VEGETATION SCIENCE, Issue 1 2003Tobias W. Donath Wisskirchen & Haeupler (1998) Abstract. We studied the restoration success of flood plain meadows in the northern Upper Rhine valley, where between 1988 and 1992, 35 ha of arable land was converted into grassland and subsequently managed for nature conservation. Remnant populations of typical alluvial meadow species were found in old meadows and along drainage ditches that dissect the whole area. We analysed the site conditions and phytosociological relevés in old and new meadows. Small differences in site parameters between old and new meadows contrasted with a clear floristic differentiation between the two meadow types. The vegetation of old meadows was much more differentiated along prevailing environmental gradients than the vegetation of new meadows. Despite the favourable site conditions for the re-establishment of species-rich meadows on the former arable land, restoration success was limited to the vicinity of remnant stands. In contrast to old meadows, indicator species of new grassland were still typical species of regularly disturbed ruderal and arable habitats, often capable of building up a persistent seed bank. The precise mapping of 23 target species revealed that even wind dispersal predominantly leads to re-establishment in the close circumference of parent plants. We found no indication that regular flooding, hay-making and autumnal grazing had an impact on recolonization of newly created grassland. Even under favourable conditions for the re-establishment of target species, restoration success in alluvial meadows proved to be strongly dispersal limited. We discuss the implications of our findings for future restoration management in grasslands. [source] |