Home About us Contact | |||
Wing Discs (wing + disc)
Selected AbstractsTranscription factor NF-Y is involved in regulation of the JNK pathway during Drosophila thorax developmentGENES TO CELLS, Issue 2 2008Yasuhide Yoshioka The CCAAT motif-binding factor, nuclear factor Y (NF-Y) consists of three different subunits, NF-YA, NF-YB and NF-YC. Knockdown of Drosophila NF-YA (dNF-YA) in the notum compartment of wing discs by a pannir -GAL4 and UAS- dNF-YAIR mainly resulted in a thorax disclosed phenotype. Reduction of the Drosophila c-Jun N-terminal kinase (JNK) basket (bsk) gene dose enhanced the knockdown of dNF-YA-induced phenotype. Monitoring of JNK activity in the wing disc by LacZ expression in a puckered (puc) -LacZ enhancer trap line revealed reduction in the level of the JNK reporter, puc-LacZ signals, in dNF-YA RNAi clones. In addition, expression of wild-type Bsk effectively suppressed the phenotype induced by knockdown of dNF-YA. The bsk gene promoter contains a CCAAT motif and this motif plays a positive role in the promoter activity. We performed chromatin immunoprecipitation (ChIP) assays in S2 cells with anti-dNF-YA IgG and quantitative real-time PCR. The bsk gene promoter region containing the CCAAT boxes was effectively amplified in the immunoprecipitates by PCR. However, this region was not amplified in the immunoprecipitates from dNF-YA knockdown cells. Furthermore, the level of endogenous bsk mRNA is reduced in the dNF-YA knockdown larvae. These results suggest that dNF-Y is necessary for proper bsk expression and activity of JNK pathway during thorax development. [source] CELLULAR LOCALIZATION AND EXPRESSION OF pygo DURING DROSOPHILA DEVELOPMENTINSECT SCIENCE, Issue 2 2003LIN Xin-da Abstract Wg/Wnt signaling is a key signaling pathway in Drosophila. Many genes involved in Wingless(wg) signal transduction pathway downstream of Wg, or it s vertebrate Wg homologue Wnt, have been identified. Transduction of the Wg signal downstream of Wg is mediated by nuclear TCF/LEF-1, through association with Armadillo (Arm),-catenin. Pygopus (pygo) is a new identified component in this pathway. Cellular localization experiment showed that pygo was expressed specifically in the nucleus. The expression profile of pygo in embryos was examined using in situ hybridization. Although pygo expressed ubiquitously in the embryos, it expressed at relatively high level in pre-blastoderm embryos which indicate a high degree of maternally provided message, followed by a low level of ubiquitous zygotic expression. This continues into larval tissues (including wing disc, eye disc and leg disc), where pygo appears to be expressed at low level. Comparison of pygo expression levels, in the wing disc, eye disc and leg disc, showed pygo expression level in the wing disc pouch and leg disc were relative higher. [source] Mi-2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in DrosophilaDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2006Yasutoyo Yamasaki Mi-2, the central component of the nucleosome remodeling and histone deacetylation (NuRD) complex, is known as an SNF2-type ATP-dependent nucleosome remodeling factor. No morphological mutant phenotype of Drosophila Mi-2 (dMi-2) had been reported previously; however, we found that rare escapers develop into adult flies showing an extra bristle phenotype. The dMi-2 enhanced the phenotype of acHw49c, which is a dominant gain-of-function allele of achaete (ac) and produces extra bristles. Consistent with these observations, the ac -expressing proneural clusters were expanded, and extra sensory organ precursors (SOP) were formed in the dMi-2 mutant wing discs. Immunostaining of polytene chromosomes showed that dMi-2 binds to the ac locus, and dMi-2 and acetylated hisotones distribute on polytene chromosomes in a mutually exclusive manner. The chromatin immunoprecipitation assay of the wing imaginal disc also demonstrated a binding of dMi-2 on the ac locus. These results suggest that the Drosophila Mi-2/NuRD complex functions in neuronal differentiation through the repression of proneural gene expression by chromatin remodeling and histone deacetylation. [source] Effects of juvenile hormone on 20-hydroxyecdysone-inducible EcR, HR3, E75 gene expression in imaginal wing cells of Plodia interpunctella lepidopteraFEBS JOURNAL, Issue 14 2004David Siaussat The IAL-PID2 cells derived from imaginal wing discs of the last larval instar of Plodia interpunctella were responsive to 20-hydroxyecdysone (20E). These imaginal cells respond to 20E by proliferative arrest followed by a morphological differentiation. These 20E-induced late responses were inhibited in presence of juvenile hormone (JH II). From these imaginal wing cells, we have cloned a cDNA sequence encoding a P. interpunctella ecdysone receptor-B1 isoform (PIEcR-B1). The amino acid sequence of PIEcR-B1 showed a high degree of identity with EcR-B1 isoforms of Bombyx mori, Manduca sexta and Choristoneura fumiferana. The pattern of PIEcR-B1mRNA induction by 20E was characterized by a biphasic response with peaks at 2 h and 18 h. The presence of the protein synthesis inhibitor anisomycin induced a slight reduction in level of PIEcR-B1 mRNA and prevented the subsequent declines observed in 20E-treated cells. Therefore, PIEcR-B1 mRNA was directly induced by 20E and its downregulation depended on protein synthesis. An exposure of imaginal wing cells to 20E in the presence of JH II caused an increased expression of Plodia E75-B and HR3 transcription factors but inhibited the second increase of PIEcR-B1 mRNA. These findings showed that in vitro JH II was able to prevent the 20E-induced differentiation of imaginal wing cells. This effect could result from a JH II action on the 20E-induced genetic cascade through a modulation of EcR-B1, E75-B and HR3 expression. [source] Transcription factor NF-Y is involved in regulation of the JNK pathway during Drosophila thorax developmentGENES TO CELLS, Issue 2 2008Yasuhide Yoshioka The CCAAT motif-binding factor, nuclear factor Y (NF-Y) consists of three different subunits, NF-YA, NF-YB and NF-YC. Knockdown of Drosophila NF-YA (dNF-YA) in the notum compartment of wing discs by a pannir -GAL4 and UAS- dNF-YAIR mainly resulted in a thorax disclosed phenotype. Reduction of the Drosophila c-Jun N-terminal kinase (JNK) basket (bsk) gene dose enhanced the knockdown of dNF-YA-induced phenotype. Monitoring of JNK activity in the wing disc by LacZ expression in a puckered (puc) -LacZ enhancer trap line revealed reduction in the level of the JNK reporter, puc-LacZ signals, in dNF-YA RNAi clones. In addition, expression of wild-type Bsk effectively suppressed the phenotype induced by knockdown of dNF-YA. The bsk gene promoter contains a CCAAT motif and this motif plays a positive role in the promoter activity. We performed chromatin immunoprecipitation (ChIP) assays in S2 cells with anti-dNF-YA IgG and quantitative real-time PCR. The bsk gene promoter region containing the CCAAT boxes was effectively amplified in the immunoprecipitates by PCR. However, this region was not amplified in the immunoprecipitates from dNF-YA knockdown cells. Furthermore, the level of endogenous bsk mRNA is reduced in the dNF-YA knockdown larvae. These results suggest that dNF-Y is necessary for proper bsk expression and activity of JNK pathway during thorax development. [source] Postembryonic development of the wing imaginal discs in the female wingless bagworm moth Eumeta variegata (Lepidoptera, Psychidae)JOURNAL OF MORPHOLOGY, Issue 2 2003Shuhei Niitsu Abstract The process of wing disc development and degeneration in the bagworm moth Eumeta variegata was investigated histologically. Morphological differences between two sexes first appear in the penultimate (eighth) larval instar. In the male, wing discs proliferate rapidly in the penultimate larval instar and continue proliferating; a conspicuous peripodial epithelium forms in the last (ninth) larval instar. The hemopoietic organs break down in this stage and disappear completely by the prepupal stage. In the female, in contrast, the wing discs remain as in the previous (seventh) instar, without proliferation of cells inside. No peripodial epithelium forms in the penultimate instar or later. Hemopoietic organs are still attached to the wing discs in the last larval instar and the entire wing discs transform into a plain, thick epidermis in the prepupal period. It is suggested that the hemopoietic organs may prevent the wing discs from developing in E. variegata. J. Morphol. 257:164,170, 2003. © 2003 Wiley-Liss, Inc. [source] |