Home About us Contact | |||
Wing Area (wing + area)
Selected AbstractsSpatially resolved X-ray diffraction as a tool for strain analysis in laterally modulated epitaxial structuresCRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2009A. Wierzbicka Abstract Spatially resolved X-ray diffraction (SRXRD) is applied for micro-imaging of strain in laterally modulated epitaxial structures. In GaAs layers grown by liquid phase epitaxial lateral overgrowth (ELO) on SiO2 -masked GaAs substrates a downward tilt of ELO wings caused by their interaction with the mask is observed. The distribution of the tilt magnitude across the wings width is determined with ,m-scale spatial resolution. This allows measuring of the shape of the lattice planes in individual ELO stripes. If a large area of the sample is studied the X-ray imaging provides precise information on the tilt of an individual wing and its distribution. In heteroepitaxial GaSb/GaAs ELO layers local mosaicity in the wing area is found. By the SRXRD the size of microblocks and their relative misorientation were analyzed. Finally, the SRXRD technique was applied to study distribution of localized strain in AlGaN epilayers grown by MOVPE on bulk GaN substrates with AlN mask. X-ray mapping proves that by mask patterning strain in AlGaN layer can be easily engineered, which opens a way to produce thicker, crack-free AlGaN layers with a higher Al content needed in GaN-based laser diodes. All these examples show that high spatial and angular resolutions offered by SRXRD makes the technique a powerful tool to study local lattice distortions in semiconductor microstructures. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] THE COST OF MELANIZATION: BUTTERFLY WING COLORATION UNDERENVIRONMENTAL STRESSEVOLUTION, Issue 2 2004W. Talloen Abstract Evolutionary studies typically focus on adaptations to particular environmental conditions, thereby often ignoring the role of possible constraints. Here we focus on the case of variation in dorsal wing melanization in a satyrine butterfly Pararge aegeria. Because melanin is a complex polymer, its synthesis may be constrained if ambient conditions limit the resource budget. This hypothesis was tested by comparing melanization among butterflies that fed as larvae on host grasses experiencing different drought-stress treatments. Treatment differences were validated both at the level of the host plant (nitrogen, carbonate, and water content) and of the butterfly (life-history traits: survival, development time, and size at maturity). Melanization rate was measured as average gray value of the basal dorsal wing area. This area, close to the thorax, is known to be functionally significant for basking in order to thermoregulate. Individuals reared on drought-stressed host plants developed paler wings, and development of darker individuals was slower and less stable as estimated by their level of fluctuating asymmetry. These results provide evidence that melanin is indeed costly to synthesize, and that differences in environmental quality can induce phenotypic variation in wing melanization. Therefore, studies dealing with spatial and/or temporal patterns of variation in wing melanization should not focus on adaptive explanations alone, but rather on a cost-benefit balance under particular sets of environmental conditions. [source] DIFFERENT CELL SIZE AND CELL NUMBER CONTRIBUTION IN TWO NEWLY ESTABLISHED AND ONE ANCIENT BODY SIZE CLINE OF DROSOPHILA SUBOBSCURAEVOLUTION, Issue 3 2003Federico C. F. Calboli Abstract Latitudinal genetic clines in body size occur in many ectotherms including Drosophila species. In the wing of D. melanogaster, these clines are generally based on latitudinal variation in cell number. In contrast, differences in wing area that evolve by thermal selection in the laboratory are in general based on cell size. To investigate possible reasons for the different cellular bases of these two types of evolutionary response, we compared the newly established North and South American wing size clines of Drosophila subobscura. The new clines are based on latitudinal variation in cell area in North America and cell number in South America. The ancestral European cline is also based on latitudinal variation in cell number. The difference in the cellular basis of wing size variation in the American clines, which are roughly the same age, together with the similar cellular basis of the new South American cline and the ancient European one, suggest that the antiquity of a cline does not explain its cellular basis. Furthermore, the results indicate that wing size as a whole, rather than its cellular basis, is under selection. The different cellular bases of different size clines are most likely explained either entirely by chance or by different patterns of genetic variance,or its expression,in founding populations. [source] Iridescent hindwing patches in the Pipevine Swallowtail: differences in dorsal and ventral surfaces relate to signal function and contextFUNCTIONAL ECOLOGY, Issue 4 2010Ronald L. Rutowski Summary 1.,Iridescent colour signals are directional but, like diffusely reflected colours, vary within and among species in ways that may be adaptations to specific types of receivers in specific light environments. 2.,The hindwings of pipevine swallowtail butterflies exhibit brilliant blue and iridescent colour patches on the ventral surface in both sexes and on the dorsal wing surface in males. Evidence suggests that the ventral iridescent blue is a component of the warning coloration of this distasteful species, while the dorsal blue iridescent wing area is a sexual signal. Given differences in the function and ecological context of signal production, we analysed reflectance spectra from the iridescent blue areas of both field-caught and laboratory-reared animals to test several predictions about the iridescent colour patches on these wing surfaces. 3.,The ventral blue patches in the warning coloration of males and females should be most visible early and late in the day, due to wing orientation relative to sun angle. We therefore predicted that these iridescent colour patches would be brighter and of longer wavelengths than the male dorsal blue patch displayed during midday courtships. The prediction about reflectance intensity was supported but the prediction about hue was not. 4.,We predicted that the sexually selected dorsal hindwing iridescence of males would be more variable among individuals and condition dependent than the naturally selected ventral iridescent colour patches. To assess variation and condition dependence, laboratory-reared and field-captured individuals were compared. The prediction about variation was not supported, but only the dorsal wing surfaces showed evidence of being condition dependent. 5.,We investigated whether development of dorsal and ventral blue iridescence was coupled by determining correlations in colour properties between the wing surfaces. Our finding of positive correlations indicated a potential developmental constraint in the evolution of colour differences between the two wing surfaces. 6.,Results of this study suggest that some properties of iridescent coloration on the hindwing of the pipevine swallowtail (especially intensity) may have been fine-tuned by evolution in response to prevailing ambient light conditions and viewing perspectives that differ among types of signal receivers. [source] Wing wear, aerodynamics and flight energetics in bumblebees (Bombus terrestris): an experimental studyFUNCTIONAL ECOLOGY, Issue 4 2001A. Hedenström Summary 1,Previous work has shown that wing wear increases mortality rate in bumblebees. Two proximate explanations have been suggested to account for this: increased energy flight costs and increased predation risk due to reduced manoeuvrability. 2,Wing wear was mimicked by experimentally clipping the forewing distal trailing edge, causing a 10% wing area reduction. Experimental and sham control bumblebees were induced to hover in a flight respirometry chamber for measuring metabolic rate of hovering. Simultaneous video and sound recordings were taken for wingbeat kinematic data required for an aerodynamic analysis. 3,In the experimental group with reduced wing area we measured increased wingbeat frequency, lift coefficient and induced power, but a reduced profile power. The mechanical power output, assuming perfect elastic storage in the flight system, remained largely unchanged after the wing-trimming treatment. 4,Metabolic flight costs (CO2 production rate) did not increase significantly in the reduced wing area group, which is in line with the aerodynamic power output. 5,Our results indicate that an increase of flight cost due to wing wear is not a likely explanation for increased mortality rate in bumblebees. Wing wear may, however, affect escape performance from predators. [source] Allometric constraints on stability and maximum size in flying fishes: implications for their evolutionJOURNAL OF FISH BIOLOGY, Issue 2 2003J. Davenport Flying fish wing area and wing-loading both rise in strongly negative allometric fashion with increasing body length and mass. Evidence is presented to show that this occurs because: (1) the leading edge of the pectoral fin ,wing' is fixed at 24% of standard length ( LS) from the snout, (2) the wing length cannot exceed 76% of LS or the tips will interfere with propulsive tail beat and (3) increased mass demands faster flying and wings with better lift : drag ratios; this selects for tapered, higher aspect ratio wing shapes. A consequence of this situation is that larger flying fishes have centres of mass increasingly further behind the centre of wing pressure. Resultant longitudinal instability restricts the maximum size of the two-winged design and the pelvic fins of four-wingers act as a stabilizing tailplane. These data indicate that the accepted model of evolution of flight in flying fishes (by extension of ballistic leaps) is flawed; it is proposed that evolution of lift-supported surface taxiing in half-beaks with enlarged pectoral fins (enhanced by ground effect) was an essential preliminary; subsequent forward migration of the centre of mass to within the wing chord permitted effective gliding. [source] Wing shape variation in the medium ground finch (Geospiza fortis): an ecomorphological approachBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009BIEKE VANHOOYDONCK Wing design in birds is subject to a suite of interacting selective pressures. As different performance traits are favoured in different ecological settings, a tight link is generally expected between variation in wing morphology and variation in ecological parameters. In the present study, we document aspects of variation in wing morphology in the medium ground finch (Geospiza fortis) on Isla Santa Cruz in the Galápagos. We compare variation in body size, simple morphometric traits (body mass, last primary length, wing length, wing chord, and wing area) and functional traits (wing loading, aspect ratio and wing pointedness) across years, among populations, and between sexes. Functional traits are found to covary across years with differences in climatic conditions, and to covary among populations with differences in habitat structure. In dry years and arid locations, wing aspect ratios are highest and wings are more pointed, consistent with a need for a low cost of transport. In wet years and cluttered habitats, wing loading is lowest and wings are more rounded, suggesting enhanced capabilities for manoeuvrability. Sexes differ in wing loading, with males having lower wing loadings than females. Superior manoeverability might be favoured in males for efficient territory maintenance. Lastly, in contrast to functional traits, we found little consistent inter-annual or inter-site variation in simple morphometric traits. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 129,138. [source] |