Benzimidazole Moieties (benzimidazole + moiety)

Distribution by Scientific Domains


Selected Abstracts


Facile Synthesis and In-Vitro Antitumor Activity of Some Pyrazolo[3,4- b]pyridines and Pyrazolo[1,5- a]pyrimidines Linked to a Thiazolo[3,2- a]benzimidazole Moiety

ARCHIV DER PHARMAZIE, Issue 1 2010
Hatem A. Abdel-Aziz
Abstract The key precursor E -3-(N,N -dimethylamino)-1-(3-methylthiazolo[3,2- a]benzimidazol-2-yl)prop-2-en-1-one 4 was synthesized in good yield using Gold's reagent. The reaction of enaminone 4 with 5-amino-3-aryl-1 - phenylpyrazoles 5a, b in refluxing acetic acid in the presence of sulphuric acid, yielded pyrazolo[3,4- b]pyridines 7a, b. Similarly, pyrazolo[1,5- a]pyrimidines 10a, b and 14a,f were prepared by reaction of enaminone 4 with 5-amino-1H -pyrazoles 8a, b and 12a,f, respectively. The structure of pyrazolo[1,5- a]pyrimidine 10b was determined by X-ray diffraction. The synthesized compounds were tested for their in-vitro antitumor activity against the colon cancer cell line CaCo-2; their cytotoxicity against the normal fibroblast cell line BHK was explored as well. Some of the tested compounds exhibited cell growth inhibitory activity. The significant antitumor activity of compound 14f against the CaCo-2 cell line (IC50 = 0.5 ,g/mL) was coupled with a lower toxicity against BHK (IC50 = 2.3 ,g/mL). [source]


ChemInform Abstract: Synthesis of Some 1,3-Thiazole, 1,3,4-Thiadiazole, Pyrazolo[5,1-c]-1,2,4-triazine, and 1,2,4-Triazolo[5,1-c]-1,2,4-triazine Derivatives Based on the Thiazolo[3,2-a]benzimidazole Moiety.

CHEMINFORM, Issue 2 2008
Nehal A. Hamdy
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Binding Studies of Asymmetric Pentacoordinate Copper(II) Complexes Containing Phenanthroline and Ethane-1,2-diamine Ligands with Calf-Thymus DNA

HELVETICA CHIMICA ACTA, Issue 9 2005
Farukh Arjmand
New chiral complexes of the composition [MLL,], where HL=1,2-bis(1H -benzimidazol-2-yl)ethane-1,2-diol=H2bimedol, M=CoII, NiII, CuII, and L,=1,10-phenanthroline (phen) or ethane-1,2-diamine (en), were synthesized and characterized. The ligand L exhibited a coordination mode involving the O-atom of only one OH group, the other one being directed away from the metal center. The complexes [Cu(Hbimedol)(en)]Cl (1), [Cu(Hbimedol)(phen)]Cl (2), [Co(Hbimedol)(phen)]Cl (3), [Ni(Hbimedol)(en)]Cl (4), and [Ni(Hbimedol)(phen)]Cl (5) were ionic in nature and stable at room temperature. The donor sets involved in coordination with the metal ions were the O-atom of one OH group and two N-atoms of the two benzimidazole moieties, besides the two N-atoms of phen or en (Fig.,1.). The proposed five-coordinate geometry of 1,5 was established by analysis of spectroscopic data; the ball-and-stick models supported the proposed structures of 1,5 since they showed apparently no strain on any bond and angle. The interaction of complexes 1 and 2 with calf-thymus DNA were carried out by UV/VIS titration, circular dichroism, electrochemical methods, and viscometry. The intrinsic binding constant Kb of 1 and 2 was determined as 1.57,104 and 1.51,104,M,1, respectively, suggesting that both complexes bind strongly to calf-thymus DNA. [source]


Alkylation of azoles: Synthesis of new heterocyclic-based AT1 -non-peptide angiotensin (II) receptor antagonists

JOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 3 2007
Amal Al-Azmi
Several novel analogues of Losartan 2 were synthesized as potential non-peptide angiotensin (II) receptor antagonists. In these non-peptide analogues, the tetrazole and the substituted imidazole rings of Losartan 2 were replaced, respectively, by a carboxylic acid function or its methyl ester and substituted triazole, imidazole or benzimidazole moieties. The biphenyl bromide precursor 3 (BPE) used to introduce the linker between the acid/ester function and the heterocyclic moiety was synthesized using Suzuki biphenyl coupling and then incorporated into the target molecule by simple nucleophilic substitution. The fixed N-aryl isomeric forms of several azole and benzimidazole tautomers were successfully separated by HPLC using 50% aqueous acetonitrile as eluent. Intermediate reaction products and final target compounds were fully characterized spectroscopically. [source]


Synthesis and characterization of thermally stable, high-modulus polyimides containing benzimidazole moieties

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2009
Shuang Wang
Abstract A series of novel benzimidazole-containing aromatic polyimides were prepared from synthesized 5,4,-diamino-2-phenyl benzimidazole (DAPBI), and commercial dianhydrides by the conventional two-step polymerization. The obtained films were amorphous and could afford flexible, transparent, and tough films with excellent thermal and mechanical properties. They showed high levels of tension strength of up to 234 MPa, modulus of up to 5.6 GPa without any stretching. According to thermal stability measurements, the glass-transition temperatures of the polymers were observed between 329 and 425 °C. The 5% weight-loss temperatures of most polyimides were above 600 °C in nitrogen. Excellent properties of these polyimides were proved to be attributed to the rigid-rod structure and hydrogen bond of intermacromolecular. SAXS and SEM results showed self-molecular orientation caused the formation of rod-like extended conformations. It was demonstrated that high degree of supramolecular order led to the increase of thermal stability and mechanical properties of the polyimide films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2024,2031, 2009 [source]