Benthic Foraminifera (benthic + foraminifera)

Distribution by Scientific Domains


Selected Abstracts


Lower Jurassic Foraminifera and Calcified Microflora from Gibraltar, Western Mediterranean

PALAEONTOLOGY, Issue 4 2001
M. K. Boudagher-Fadel
Benthic foraminifera are described for the first time from the Gibraltar Limestone Formation of the Rock of Gibraltar. The new species Siphovalvulina colomiS. gibraltarensisRiyadhella praeregularis occur with Duotaxis metula Kristan, Everticyclammina praevirguliana Fugagnoli, Siphovalvulina sp.,an atypically early example of Textulariopsis sp., and Nodosaria sp. Microflora are present as the probable cyanobacterium Cayeuxia ?piae Frollo, the alga Palaeodasycladus ?mediterraneus (Pia), and the disputed alga Thaumatoporella ?parvovesiculifera (Raineri). The foraminifera compare most closely with poorly-known taxa from Italy, Spain and Morocco, and are consistent with an Early Jurassic (Sinemurian) age for the upper part of the &62;460-m-thick Gibraltar Limestone. Most are textulariids and more primitive than species well known from the later Early Jurassic (Pliensbachian) of the Mediterranean region, especially Morocco and Italy. The biota as a whole is characteristic of inner carbonate platform environments widespread along the rifted western margins of the Early Jurassic Tethys, notably those recorded from Morocco, Italy and Greece as well as southern Spain. [source]


Constraints on the glacial operation of the atlantic ocean's conveyor circulation

ISRAEL JOURNAL OF CHEMISTRY, Issue 1 2002
Wallace S. BroeckerArticle first published online: 8 MAR 2010
Circulation in the Atlantic Ocean is currently dominated by a northward flow of upper waters balanced by a return flow of deep water (i.e., the conveyor). Paleoproxies tell us that, unlike today, during the glacial age the deep Atlantic was stratified. Rather than being flooded with one nearly homogeneous water mass, there were two distinctly different ones. In this paper, the paleoproxy results are analyzed in an attempt to constrain the sources and ventilation rate of the deeper of these two glacial Atlantic water masses. Taken together, the cadmium and carbon isotope measurements on benthic foraminifera and the radiocarbon measurements on coexisting benthic and planktonic foraminifera appear to require a conveyor-like circulation no weaker than half of today's. This conclusion is at odds with geostrophic reconstructions. This seeming disagreement could be eliminated if, as suggested by Keigwin and Schlegel, the radiocarbon measurements by Broecker et al. significantly underestimate the difference between the 14C to C ratio for glacialage surface water and deep water in the equatorial Atlantic. [source]


Bipolar gene flow in deep-sea benthic foraminifera

MOLECULAR ECOLOGY, Issue 19 2007
J. PAWLOWSKI
Abstract Despite its often featureless appearance, the deep-ocean floor includes some of the most diverse habitats on Earth. However, the accurate assessment of global deep-sea diversity is impeded by a paucity of data on the geographical ranges of bottom-dwelling species, particularly at the genetic level. Here, we present molecular evidence for exceptionally wide distribution of benthic foraminifera, which constitute the major part of deep-sea meiofauna. Our analyses of nuclear ribosomal RNA genes revealed high genetic similarity between Arctic and Antarctic populations of three common deep-sea foraminiferal species (Epistominella exigua, Cibicides wuellerstorfi and Oridorsalis umbonatus), separated by distances of up to 17 000 km. Our results contrast with the substantial level of cryptic diversity usually revealed by molecular studies, of shallow-water benthic and planktonic marine organisms. The very broad ranges of the deep-sea foraminifera that we examined support the hypothesis of global distribution of small eukaryotes and suggest that deep-sea biodiversity may be more modest at global scales than present estimates suggest. [source]


Modern and Holocene hydrographic characteristics of the shallow Kara Sea shelf (Siberia) as reflected by stable isotopes of bivalves and benthic foraminifera

BOREAS, Issue 3 2005
JOHANNES SIMSTICH
River discharge of Ob and Yenisei to the Kara Sea is highly variable on seasonal and interannual time scales. River water dominates the shallow bottom water near the river mouths, making it warmer and less saline but seasonally and interannually more changeable than bottom water on the deeper shelf. This hydrographic pattern shows up in measurements and modelling, and in stable isotope records (,18 O, ,13 C) along the growth axis of bivalve shells and in multiple analyses of single benthic foraminiferal shells. Average isotope ratios increase, but sample-internal variability decreases with water depth and distance from river mouths. However, isotope records of bivalves and foraminifera of a sediment core from a former submarine channel of Yenisei River reveal a different pattern. The retreat of the river mouth from this site due to early Holocene sea level rise led to increasing average isotope values up core, but not to the expected decrease of the in-sample isotope variability. Southward advection of cold saline water along the palaeo-river channel probably obscured the hydrographic variability during the early Holocene. Later, when sediment filled the channel, the hydrographic variability at the core location remained low, because the shallowing proceeded synchronously with the retreat of the river mouth. [source]