Home About us Contact | |||
Wild-type Embryos (wild-type + embryo)
Selected AbstractsMultiple mechanisms mediate motor neuron migration in the zebrafish hindbrainDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2010Stephanie M. Bingham Abstract The transmembrane protein Van gogh-like 2 (Vangl2) is a component of the noncanonical Wnt/Planar Cell Polarity (PCP) signaling pathway, and is required for tangential migration of facial branchiomotor neurons (FBMNs) from rhombomere 4 (r4) to r5-r7 in the vertebrate hindbrain. Since vangl2 is expressed throughout the zebrafish hindbrain, it might also regulate motor neuron migration in other rhombomeres. We tested this hypothesis by examining whether migration of motor neurons out of r2 following ectopic hoxb1b expression was affected in vangl2, (trilobite) mutants. Hoxb1b specifies r4 identity, and when ectopically expressed transforms r2 to an "r4-like" compartment. Using time-lapse imaging, we show that GFP-expressing motor neurons in the r2/r3 region of a hoxb1b -overexpressing wild-type embryo migrate along the anterior-posterior (AP) axis. Furthermore, these cells express prickle1b (pk1b), a Wnt/PCP gene that is specifically expressed in FBMNs and is essential for their migration. Importantly, GFP-expressing motor neurons in the r2/r3 region of hoxb1b -overexpressing trilobite mutants and pk1b morphants often migrate, even though FBMNs in r4 of the same embryos fail to migrate longitudinally (tangentially) into r6 and r7. These observations suggest that tangentially migrating motor neurons in the anterior hindbrain (r1-r3) can use mechanisms that are independent of vangl2 and pk1b functions. Interestingly, analysis of tri; val double mutants also suggests a role for vangl2 -independent factors in neuronal migration, since the valentino mutation partially suppresses the trilobite mutant migration defect. Together, the hoxb1b and val experiments suggest that multiple mechanisms regulate motor neuron migration along the AP axis of the zebrafish hindbrain. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010 [source] Activation of Tolloid-like 1 gene expression by the cardiac specific homeobox gene Nkx2,5DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 4 2009Inna Sabirzhanova Mammalian Tolloid-like 1 (Tll-1) is a pleiotropic metalloprotease that is expressed by a small subset of cells within the precardiac mesoderm and is necessary for proper heart development. Following heart tube formation Tll-1 is expressed by the endocardium and regions of myocardium overlying the region of the muscular interventricular septum. Mutations in Tll-1 lead to embryonic lethality due to cardiac defects. We demonstrate that the Tll-1 promoter contains Nkx2,5 binding sites and that the Tll-1 promoter is activated by and directly binds Nkx2,5. Tll-1 expression is ablated by a dominant negative Nkx2,5 or by mutation of the Nkx2,5 binding sites within the Tll-1 promoter. In vivo, Tll-1 expression is decreased in the hearts of Nkx2,5 knockout embryos when compared with hemizygous and wild-type embryos. These results show that Nkx2,5 is a direct activator of Tll-1 expression and provide insight into the mechanism of the defects found in both the Tll-1 and Nkx2,5 knockout mice. [source] Identification of Tgf,1i4 as a downstream target of Foxc1DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2006Paula Sommer Craniofacial development is severely affected by null mutations in Foxc1, indicating a multifunctional role for Foxc1 in ocular, maxilla and mandible, skull and facial gland development. To delineate signaling pathways in which Foxc1 is involved we compared the transcriptomes of whole heads of Foxc1+/+ and Foxc1,/, embryos using a candidate cDNA array comprising genes expressed in the head mesenchyme and ocular region, and a 7K oligo array. Absence of Foxc1 led to downregulation of Stat1 and Galnt4, and upregulation of Tgf,1i4 at embryonic day 13.5 in the developing head mesenchyme. Comparative analyses revealed differences in the expression pattern of Tgf,1i4 in the head mesenchyme of Foxc1,/, and Foxc1+/+ embryos. In the ocular regions of Foxc1,/, embryos, Tgf,1i4 was expressed in higher levels in the conjunctival epithelium and in the condensing mesenchyme on the nasal aspect of the developing eye while in wild-type embryos more intense expression was seen in the mesenchyme on the temporal aspect of the eye. Such data indicate that Foxc1 regulation of Tgf,1i4 is complex and may be cell-type dependent. Analysis of the regulation of Tgf,1i4 by Foxc1 in a more homogenous cell population, mesenchymal cells isolated from the periocular region revealed that, in these cells, Foxc1 negatively regulated Tgf,1i4 expression, presumably via secreted factors such as TGF-,1. Since Foxc1 expression is essential for normal craniofacial development, it is possible that its downstream targets play a role in the development of the phenotypes associated with null mutations in Foxc1. [source] Churchill and Sip1a repress fibroblast growth factor signaling during zebrafish somitogenesisDEVELOPMENTAL DYNAMICS, Issue 2 2010Fatma O. Kok Abstract Cell-type specific regulation of a small number of growth factor signal transduction pathways generates diverse developmental outcomes. The zinc finger protein Churchill (ChCh) is a key effector of fibroblast growth factor (FGF) signaling during gastrulation. ChCh is largely thought to act by inducing expression of the multifunctional Sip1 (Smad Interacting Protein 1). We investigated the function of ChCh and Sip1a during zebrafish somitogenesis. Knockdown of ChCh or Sip1a results in misshapen somites that are short and narrow. As in wild-type embryos, cycling gene expression occurs in the developing somites in ChCh and Sip1a compromised embryos, but expression of her1 and her7 is maintained in formed somites. In addition, tail bud fgf8 expression is expanded anteriorly in these embryos. Finally, we found that blocking FGF8 restores somite morphology in ChCh and Sip1a compromised embryos. These results demonstrate a novel role for ChCh and Sip1a in repression of FGF activity. Developmental Dynamics 239:548,558, 2010. © 2009 Wiley-Liss, Inc. [source] Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNSDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2004Dervla M. Mellerick Abstract Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 308,318, 2004 [source] Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005Estela Cuevas Abstract Correct positioning of cortical neurons during development depends on the radial migration of the projection neurons and on the coordinated tangential and radial migrations of the subcortically generated interneurons. As previously shown, a transient and moderate maternal deficiency in thyroxin during early corticogenesis alters the radial migration of projection neurons. To determine if a similar effect might also affect tangential migration of medial ganglionic eminence (MGE)-derived neurons at the origin of cortical interneurons, explants of MGE from green fluorescent protein (GFP)-transgenic embryos were implanted into flat cortical mounts from wild-type embryos. The distances covered and the preferential migration (medially) of GFP-MGE neurons from embryos of hypothyroxinemic dams are not affected in their tangential migration into wild-type control cortices. In contrast, when GFP-MGE neurons from embryos of control or hypothyroxinemic dams migrate within cortices from embryos of hypothyroxinemic dams, the GFP-MGE-derived neurons lose their preferential direction of migration, although they still migrate for long distances throughout the cortex. Our results show that maternal hypothyroxinemia alters the tangential migration of GFP-MGE-derived neurons in the neocortex of the progeny and suggest that this alteration is not derived from the migratory neurons themselves but through undefined short- and long-range cues responsible for the guidance of their migration. [source] Gene expression and digit homology in the chicken embryo wingEVOLUTION AND DEVELOPMENT, Issue 1 2005Monique C. M. Welten Summary The bird wing is of special interest to students of homology and avian evolution. Fossil and developmental data give conflicting indications of digit homology if a pentadactyl "archetype" is assumed. Morphological signs of a vestigial digit I are seen in bird embryos, but no digit-like structure develops in wild-type embryos. To examine the developmental mechanisms of digit loss, we studied the expression of the high-mobility group box containing Sox9 gene, and bone morphogenetic protein receptor 1b (bmpR-1b),markers for precondensation and prechondrogenic cells, respectively. We find an elongated domain of Sox9 expression, but no bmpR-1b expression, anterior to digit II. We interpret this as a digit I domain that reaches precondensation, but not condensation or precartilage stages. It develops late, when the tissue in which it is lodged is being remodeled. We consider these findings in the light of previous Hoxd-11 misexpression studies. Together, they suggest that there is a digit I vestige in the wing that can be rescued and undergo development if posterior patterning cues are enhanced. We observed Sox9 expression in the elusive "element X" that is sometimes stated to represent a sixth digit. Indeed, incongruity between digit domains and identities in theropods disappears if birds and other archosaurs are considered primitively polydactyl. Our study provides the first gene expression evidence for at least five digital domains in the chick wing. The failure of the first to develop may be plausibly linked to attenuation of posterior signals. [source] Versican expression during skeletal/joint morphogenesis and patterning of muscle and nerve in the embryonic mouse limbTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2005Holly E. Snow Abstract Versican, an extracellular matrix proteoglycan, has been implicated in limb development and is expressed in precartilage mesenchymal condensations. However, studies have lacked precise spatial and temporal investigation of versican localization during skeletogenesis and its relationship to patterning of muscle and nerve during mammalian limb development. The transgenic mouse line hdf (heart defect), which bears a lacZ reporter construct disrupting Cspg2 encoding versican, allowed ready detection of hdf transgene expression through histochemical analysis. Hdf transgene expression in whole mount heterozygous embryos and localization of versican relative to cartilage, muscle, and nerve tissues in paraffin-embedded limb sections of wild-type embryos from 10.5,14 days postcoitum were evaluated by lacZ histochemistry, immunohistochemistry, and in situ hybridization. Versican was localized within precartilage condensations and nascent cartilages with expression diminishing during maturation of the cartilage model at later time points. Interestingly, versican remained highly expressed in developing synovial joint interzones, suggesting potential function for versican in joint morphogenesis. Isolated myoblasts, incipient skeletal muscle masses, and neurites were not present in areas of strong versican expression within the developing limb. Versican-expressing tissues may reserve space for the future limb skeleton and developing joints and may aid in patterning of muscle and nerve by deterring muscle migration and innervation into these regions. © 2005 Wiley-Liss, Inc. [source] |