Home About us Contact | |||
Wild-caught Females (wild-caught + female)
Selected AbstractsOviposition preference and larval performance within a diverging lineage of lycaenid butterfliesECOLOGICAL ENTOMOLOGY, Issue 3 2004Matthew L. Forister Abstract. 1. The butterfly genus Mitoura in Northern California includes three nominal species associated with four host plants having parapatric or interdigitated ranges. Genetic analyses have shown the taxa to be very closely related, and adults from all host backgrounds will mate and produce viable offspring in the laboratory. Oviposition preference and larval performance were investigated with the aim of testing the hypothesis that variation in these traits can exist in a system in which non-ecological barriers to gene flow (i.e. geographic barriers and genetic incompatibilities) appear to be minimal. 2. Females were sampled from 12 locations throughout Northern California, including sympatric and parapatric populations associated with the four different host-plant species. Oviposition preference was assayed by confining wild-caught females with branches of all four host species and counting the number of eggs laid on each. Offspring were reared on the same host species and two measures of larval success were taken: per cent survival and pupal weight. 3. For populations associated with one of the hosts, incense cedar, the preference,performance relationship is simple: the host that females chose is the plant which results in the highest pupal weights for offspring. The preference,performance relationship for populations associated with the other hosts is more complex and may reflect different levels of local adaptation. The variation in preference and performance reported here suggests that these traits can evolve when non-ecological barriers to gene flow are low, and that differences in these traits may be important for the evolution of reproductive isolation within Mitoura. [source] Male Mate Choice in the Guppy (Poecilia reticulata): Do Males Prefer Larger Females as Mates?ETHOLOGY, Issue 2 2004Emily J. E. Herdman Although females are the choosier sex in most species, male mate choice is expected to occur under certain conditions. Theoretically, males should prefer larger females as mates in species where female fecundity increases with body size. However, any fecundity-related benefits accruing to a male that has mated with a large female may be offset by an associated fitness cost of shared paternity if large females are more likely to be multiply mated than smaller females in nature. We tested the above hypothesis and assumption using the Trinidadian guppy (Poecilia reticulata) by behaviourally testing for male mate choice in the laboratory and by ascertaining (with the use of microsatellite DNA genotyping) patterns of male paternity in wild-caught females. We observed significant positive relationships between female body length and fecundity (brood size) and between body length and level of multiple paternity in the broods of females collected in the Quaré River, Trinidad. In laboratory tests, a preference for the larger of two simultaneously-presented virgin females was clearly expressed only when males were exposed to the full range of natural stimuli from the females, but not when they were limited to visual stimuli alone. However, as suggested by our multiple paternity data, males that choose to mate with large females may incur a larger potential cost of sperm competition and shared paternity compared with males that mate with smaller females on average. Our results thus suggest that male guppies originating from the Quaré River possess mating preferences for relatively large females, but that such preferences are expressed only when males can accurately assess the mating status of encountered females that differ in body size. [source] THE ADAPTIVE SIGNIFICANCE OF TEMPERATURE-DEPENDENT SEX DETERMINATION: EXPERIMENTAL TESTS WITH A SHORT-LIVED LIZARDEVOLUTION, Issue 10 2005Daniel A. Warner Abstract Why is the sex of many reptiles determined by the temperatures that these animals experience during embryogenesis, rather than by their genes? The Charnov-Bull model suggests that temperature-dependent sex determination (TSD) can enhance maternal fitness relative to genotypic sex determination (GSD) if offspring traits affect fitness differently for sons versus daughters and nest temperatures either determine or predict those offspring traits. Although potential pathways for such effects have attracted much speculation, empirical tests largely have been precluded by logistical constraints (i.e., long life spans and late maturation of most TSD reptiles). We experimentally tested four differential fitness models within the Charnov-Bull framework, using a short-lived, early-maturing Australian lizard (Amphibolurus muricatus) with TSD. Eggs from wild-caught females were incubated at a range of thermal regimes, and the resultant hatchlings raised in large outdoor enclosures. We applied an aromatase inhibitor to half the eggs to override thermal effects on sex determination, thus decoupling sex and incubation temperature. Based on relationships between incubation temperatures, hatching dates, morphology, growth, and survival of hatchlings in their first season, we were able to reject three of the four differential fitness models. First, matching offspring sex to egg size was not plausible because the relationship between egg (offspring) size and fitness was similar in the two sexes. Second, sex differences in optimal incubation temperatures were not evident, because (1) although incubation temperature influenced offspring phenotypes and growth, it did so in similar ways in sons versus daughters, and (2) the relationship between phenotypic traits and fitness was similar in the two sexes, at least during preadult life. We were unable to reject a fourth model, in which TSD enhances offspring fitness by generating seasonal shifts in offspring sex ratio: that is, TSD allows overproduction of daughters (the sex likely to benefit most from early hatching) early in the nesting season. In keeping with this model, hatching early in the season massively enhanced body size at the beginning of the first winter, albeit with a significant decline in probability of survival. Thus, the timing of hatching is likely to influence reproductive success in this short-lived, early maturing species; and this effect may well differ between the sexes. [source] THE EVOLUTION OF WING COLOR: MALE MATE CHOICE OPPOSES ADAPTIVE WING COLOR DIVERGENCE IN COLIAS BUTTERFLIESEVOLUTION, Issue 5 2003Jacintha Ellers Abstract Correlated evolution of mate signals and mate preference may be constrained if selection pressures acting on mate preference differ from those acting on mate signals. In particular, opposing selection pressures may act on mate preference and signals when traits have sexual as well as nonsexual functions. In the butterfly Colias philodice eriphyle, divergent selection on wing color across an elevational gradient in response to the thermal environment has led to increasing wing melanization at higher elevations. Wing color is also a long-range signal used by males in mate searching. We conducted experiments to test whether sexual selection on wing melanization via male mate choice acts in the same direction as natural selection on mate signals due to the thermal environment. We performed controlled mate choice experiments in the field over an elevational range of 1500 meters using decoy butterflies with different melanization levels. Also, we obtained a more direct estimate of the relation between wing color and sexual selection by measuring mating success in wild-caught females. Both our experiments showed that wing melanization is an important determinant of female mating success in C. p. eriphyle. However, a lack of elevational variation in male mate preference prevents coevolution of mate signals and mate preference, as males at all elevations prefer less-melanized females. We suggest that this apparently maladaptive mate choice may be maintained by differences in detectability between the morphs or by preservation of species recognition. [source] Combined effect of incubation and ambient temperature on the feeding performance of a small ectothermAUSTRAL ECOLOGY, Issue 8 2006JOKE BILCKE Abstract Many ectothermic animals are subject to fluctuating environmental temperatures during incubation as well as post-birth. Numerous studies examined the effects of incubation temperature or ambient temperature on various aspects of offspring phenotype. We investigated whether incubation temperature and ambient temperature have an interactive effect on offspring performance. Our study animal, the ectothermic vertebrate Lampropholis delicata (common garden skink; De Vis 1888), experiences fluctuating environmental temperatures caused by differential invasion of an exotic plant Vinca major (blue periwinkle). In the laboratory, eggs from wild-caught females were assigned to different incubation temperatures that mimicked variation in natural nests. The feeding performance and digestion time of each hatchling was tested at ambient temperatures that represented environments invaded to different degrees by periwinkle. Incubation and ambient temperature interacted to affect a lizard's mobility, the time that it took to capture, subdue and handle a prey, and the number of handling ,errors' that it made while foraging. For a number of these characteristics, incubation-induced changes to a lizard's mass significantly affected this relationship. Irrespective of size, no interaction effect was found for digestion time: lizards digested food faster at warmer temperatures, regardless of incubation temperature. Thus, temperatures experienced during incubation may alter an animal's phenotype so that the surrounding thermal environment differentially affects aspects of feeding performance. Our results also demonstrate that incubation environment can induce changes to morphology and behaviour that carry over into a lizard's early life, and that in some cases these differences in phenotype interact to affect performance. We suggest that the immediate removal of exotic plants as part of a weed control strategy could have important implications for the foraging performance, and presumably fitness, of ectothermic animals. [source] |