Wild Relatives (wild + relative)

Distribution by Scientific Domains


Selected Abstracts


A metapopulation model for the introgression from genetically modified plants into their wild relatives

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 2 2009
Patrick G. Meirmans
Abstract Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgene goes to fixation in the metapopulation. Furthermore, the overall frequency of the transgene in the metapopulation, after a certain number of generations of introgression, depends on the population dynamics. If there is a high rate of migration or a high rate of population turnover, the overall transgene frequency is much higher than with lower rates. However, under an island model of population structure, this increased frequency has only a very small effect on the probability of fixation of the transgene. Considering these results, studies on the potential ecological risks of introgression from GM plants should look not only at the rate of introgression and selection acting on the transgene, but also at the metapopulation dynamics of the wild relative. [source]


Essential oil constituents of Melia dubia, a wild relative of Azadirachta indica growing in the Eastern Ghats of Peninsular India

FLAVOUR AND FRAGRANCE JOURNAL, Issue 4 2001
M. A. H. Nagalakshmi
Abstract The leaf essential oil of Melia dubia Cav. (Meliaceae) has been studied by GC,MS. The leaf essential oil consists chiefly of monoterpenes (35.71%) and oxygenated monoterpenes (27.98%), accompanied by a relatively much smaller amount of alkanes (11.17%), sesquiterpene hydrocarbons (9.26%) and phenylpropanoids (3.90%). The monoterpene camphene occurs as a major constituent (21.68%) of this leaf essential oil. It is accompanied by a noticeable amount of ,- and ,-pinene (3.12% and 5.13%, respectively) and a much smaller amount of sabinene (2.75%). The oxygenated monoterpenes are distinctly dominated by the presence of the bicyclic ketone camphor (17.85%), while iso-borneol and borneol are detected in much smaller amounts (4.15% and 1.12%, respectively). Copyright © 2001 John Wiley & Sons, Ltd. [source]


Demographic vital rates determine the performance advantage of crop,wild hybrids in lettuce

JOURNAL OF APPLIED ECOLOGY, Issue 6 2005
DANNY A. P. HOOFTMAN
Summary 1Hybridization seems possible for many crop species after pollen transfer from crops to wild relatives in the surrounding vegetation. Subsequent introgression of crop-specific traits into wild relatives could lead to invasive introgressants. This process has become a public concern following the introduction of genetically modified (GM) crops. Until now, few studies have used demographic vital rates to compare the performance of hybrids with their wild relatives. 2We created second-generation (S1 and BC1) hybrids between the non-transgenic crop Lactuca sativa and its entirely cross-fertile wild relative Lactuca serriola. Seeds of parents and hybrids were individually sown in field plots at three different locations. Next to germination and survival, we measured a range of single fitness components and morphological traits. We also compared observed phenotypes to phenotypes theoretically expected, according to different inheritance scenarios. 3Phenotypes of both hybrid classes resembled L. serriola closely, and more than theoretically expected. However, demographic vital rates, i.e. germination and survival of hybrids were much higher than in L. serriola. 4Our results indicate that hybrids between crop and wild Lactuca are phenotypically indistinguishable from the wild relative and thus will largely remain unnoticed when they occur. However, these hybrids could potentially become invasive because of substantial differences in vital rates and seeds returned per seed sown. 5Synthesis and applications. A comparative study on single fitness components, such as seed production, alone would not have revealed the performance advantage of crop,wild hybrids in Lactuca. Therefore, studying demographic vital rates of hybrids and back-crosses to test for long-term consequences of hybridization should be part of any risk assessment of GM crops. Demographic vital rates are also important for the development of predictive modelling tools that can be employed to test the individual- and population-level consequences of new-to-add traits. [source]


Evaluating Tripsacum -introgressed maize germplasm after infestation with western corn rootworms (Coleoptera: Chrysomelidae)

JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2009
D. A. Prischmann
Abstract Maize (Zea mays L.) is a valuable commodity throughout the world, but corn rootworms (Chrysomelidae: Diabrotica spp.) often cause economic damage and increase production costs. Current rootworm management strategies have limitations, and in order to create viable management alternatives, researchers have been developing novel maize lines using Eastern gamagrass (Tripsacum dactyloides L.) germplasm, a wild relative of maize that is resistant to rootworms. Ten maize Tripsacum -introgressed inbred lines derived from recurrent selection of crosses with gamagrass and teosinte (Zea diploperennis Iltis) recombinants and two public inbred lines were assessed for susceptibility to western corn rootworm (Diabrotica virgifera virgifera LeConte) and yield in a two-year field study. Two experimental maize inbred lines, SDG11 and SDG20, had mean root damage ratings that were significantly lower than the susceptible public line B73. Two other experimental maize inbred lines, SDG12 and SDG6, appeared tolerant to rootworm damage because they exhibited yield increases after rootworm infestation in both years. In the majority of cases, mean yield per plant of experimental maize lines used in yield analyses was equal to or exceeded that of the public inbred lines B73 and W64A. Our study indicates that there is potential to use Tripsacum -introgressed maize germplasm in breeding programs to enhance plant resistance and/or tolerance to corn rootworms, although further research on insect resistance and agronomic potential of this germplasm needs to be conducted in F1 hybrids. [source]


Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 5-6 2010
Leonie C. Moyle
Abstract Although traditionally separated by different aims and methodologies, research on agricultural and evolutionary problems shares a common goal of understanding the mechanisms underlying functionally important traits. As such, research in both fields offers potential complementary and reciprocal insights. Here, we discuss adaptive stress responses (specifically to water stress) as an example of potentially fruitful research reciprocity, where agricultural research has clearly produced advances that could benefit evolutionary studies, while evolutionary studies offer approaches and insights underexplored in crop studies. We focus on research on Solanum species that include the domesticated tomato and its wild relatives. Integrated approaches to understanding ecological adaptation are particularly attractive in tomato and its wild relatives: many presumptively adaptive phenotypic differences characterize wild species, and the physiological and mechanistic basis of many relevant traits and environmental responses has already been examined in the context of cultivated tomato and some wild species. We highlight four specific instances where these reciprocal insights can be combined to better address questions that are fundamental both to agriculture and evolution. [source]


A metapopulation model for the introgression from genetically modified plants into their wild relatives

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 2 2009
Patrick G. Meirmans
Abstract Most models on introgression from genetically modified (GM) plants have focused on small spatial scales, modelling gene flow from a field containing GM plants into a single adjacent population of a wild relative. Here, we present a model to study the effect of introgression from multiple plantations into the whole metapopulation of the wild relative. The most important result of the model is that even very low levels of introgression and selection can lead to a high probability that the transgene goes to fixation in the metapopulation. Furthermore, the overall frequency of the transgene in the metapopulation, after a certain number of generations of introgression, depends on the population dynamics. If there is a high rate of migration or a high rate of population turnover, the overall transgene frequency is much higher than with lower rates. However, under an island model of population structure, this increased frequency has only a very small effect on the probability of fixation of the transgene. Considering these results, studies on the potential ecological risks of introgression from GM plants should look not only at the rate of introgression and selection acting on the transgene, but also at the metapopulation dynamics of the wild relative. [source]


A Late Neolithic vertebrate food web based on stable isotope analyses

INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 4 2006
C. Bösl
Abstract Stable carbon and nitrogen isotope analyses of bone collagen, and stable carbon and oxygen isotope analyses of the bone's structural carbonate, were performed on 120 individuals representing 33 vertebrate species, including a single human bone find, collected from the Late Neolithic settlement at Pestenacker, Bavaria, Germany. We were thus capable of reconstructing a rather complex food web and could also address particular issues, such as whether humans influenced the diet of their domestic animals as opposed to their wild relatives, or whether humans perhaps had to compete over food with their domesticates. A rather unexpected result was that freshwater fish, which could be captured in the nearby river Lech, a major tributary of the Danube, contributed to the human diet only occasionally. As for mammals, it was also possible to recognise different trophic levels for birds and aquatic vertebrates, applying stable isotope analyses to both bone collagen and structural carbonate. In the case of fish, ,18O values at least revealed a physiological regularity in terms of temperature preference, besides diet. Conceivably, variability of ,18O in surface water as reflected, for example, by species that avoided human settlements, may help to characterise past ecosystems and to define site catchment exploited by Neolithic man in the course of food acquisition. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Transgenic virus resistance in cultivated squash affects pollinator behaviour

JOURNAL OF APPLIED ECOLOGY, Issue 5 2009
Holly R. Prendeville
Summary 1.,Two ecological risks associated with the use of transgenic crops are transgene movement into wild populations and effects on non-target organisms, such as pollinators. Despite the importance of pollinators, and their contribution to the global food supply, little is known about how they are affected by transgenic crops. Pollinator preferences affect plant mating patterns; thus understanding the effects of transgenic crops on pollinators will aid in understanding transgene movement. 2.,Honey bee and squash bee visit number and duration were recorded on conventional and transgenic virus-resistant squash Cucurbita pepo planted in a randomized block design. Floral characters were measured to explain differences in pollinator behaviour. The effect of Zucchini Yellow Mosaic Virus infection on pollinator behaviour was also examined. 3.,Honey bees visited female conventional flowers more than female transgenic flowers. Conventional flowers were generally larger with more nectar than transgenic flowers, although floral traits did not account for differences in pollinator visitation. 4.,Squash bees visited male transgenic flowers more than male conventional flowers; squash bees also spent more time in female transgenic flowers than in female conventional flowers. Transgenic flowers were significantly larger with greater amounts of sweeter nectar and they were present in greater number. Floral traits accounted for some of the variation in pollinator visitation. 5.,Squash bee visit number and duration did not differ between virus-infected and healthy plants, but this may be because pollinator behaviour was observed early in the virus infection. 6.,Synthesis and applications. Pollinator behaviour controls patterns of plant mating thus non-target effects of transgenic resistance, such as those observed here, may influence transgene movement into wild populations. These results suggest that transgenic crops should not be planted within the native range of wild relatives because pleiotropic effects may affect crop-wild hybridization and transgene introgression into wild populations. [source]


Demographic vital rates determine the performance advantage of crop,wild hybrids in lettuce

JOURNAL OF APPLIED ECOLOGY, Issue 6 2005
DANNY A. P. HOOFTMAN
Summary 1Hybridization seems possible for many crop species after pollen transfer from crops to wild relatives in the surrounding vegetation. Subsequent introgression of crop-specific traits into wild relatives could lead to invasive introgressants. This process has become a public concern following the introduction of genetically modified (GM) crops. Until now, few studies have used demographic vital rates to compare the performance of hybrids with their wild relatives. 2We created second-generation (S1 and BC1) hybrids between the non-transgenic crop Lactuca sativa and its entirely cross-fertile wild relative Lactuca serriola. Seeds of parents and hybrids were individually sown in field plots at three different locations. Next to germination and survival, we measured a range of single fitness components and morphological traits. We also compared observed phenotypes to phenotypes theoretically expected, according to different inheritance scenarios. 3Phenotypes of both hybrid classes resembled L. serriola closely, and more than theoretically expected. However, demographic vital rates, i.e. germination and survival of hybrids were much higher than in L. serriola. 4Our results indicate that hybrids between crop and wild Lactuca are phenotypically indistinguishable from the wild relative and thus will largely remain unnoticed when they occur. However, these hybrids could potentially become invasive because of substantial differences in vital rates and seeds returned per seed sown. 5Synthesis and applications. A comparative study on single fitness components, such as seed production, alone would not have revealed the performance advantage of crop,wild hybrids in Lactuca. Therefore, studying demographic vital rates of hybrids and back-crosses to test for long-term consequences of hybridization should be part of any risk assessment of GM crops. Demographic vital rates are also important for the development of predictive modelling tools that can be employed to test the individual- and population-level consequences of new-to-add traits. [source]


Host-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum

JOURNAL OF APPLIED ENTOMOLOGY, Issue 3 2001
Sharma
Sorghum midge, Stenodiplosis (Contarinia) sorghicola (Coquillett) is an important pest of grain sorghum world-wide. Considerable progress has been made in screening and breeding for resistance to sorghum midge. However, some of the sources of resistance have become susceptible to sorghum midge in Kenya, in eastern Africa. Therefore, the wild relatives of Sorghum bicolor were studied as a possible source of new genes conferring resistance to sorghum midge. Midge females did not lay eggs in the spikelets of Sorghum amplum, Sorghum bulbosum, and Sorghum angustum compared to 30% spikelets with eggs in Sorghum halepense when infested with five midge females per panicle under no-choice conditions. However, one egg was laid in S. amplum when infested with 50 midges per panicle. A larger number of midges were attracted to the odours from the panicles of S. halepense than to the panicles of Sorghum stipoideum, Sorghum brachypodum, S.angustum, Sorghum macrospermum, Sorghum nitidium, Sorghum laxiflorum, and S. amplum in dual-choice olfactometer tests. The differences in midge response to the odours from S. halepense and Sorghum intrans were not significant. Under multi-choice conditions, when the females were also allowed a contact with the host, more sorghum midge females were attracted to the panicles of S. bicolor compared with S. amplum, S. angustum, and S. halepense. In another test, numerically more midges responded to the panicles of IS 10712 compared with S. halepense, whereas the differences in midge response to the panicles of ICSV 197 (S. bicolor) and S. halepense were not apparent, indicating that S. halepense is as attractive to sorghum midge females as S. bicolor. The wild relatives of sorghum (except S. halepense) were not preferred for oviposition, and they were also less attractive to the sorghum midge females. Thus, wild relatives of sorghum can prove to be an alternative source of genes for resistance to sorghum midge. [source]


Are cattle, sheep, and goats endangered species?

MOLECULAR ECOLOGY, Issue 1 2008
P. TABERLET
Abstract For about 10 000 years, farmers have been managing cattle, sheep, and goats in a sustainable way, leading to animals that are well adapted to the local conditions. About 200 years ago, the situation started to change dramatically, with the rise of the concept of breed. All animals from the same breed began to be selected for the same phenotypic characteristics, and reproduction among breeds was seriously reduced. This corresponded to a strong fragmentation of the initial populations. A few decades ago, the selection pressures were increased again in order to further improve productivity, without enough emphasis on the preservation of the overall genetic diversity. The efficiency of modern selection methods successfully increased the production, but with a dramatic loss of genetic variability. Many industrial breeds now suffer from inbreeding, with effective population sizes falling below 50. With the development of these industrial breeds came economic pressure on farmers to abandon their traditional breeds, and many of these have recently become extinct as a result. This means that genetic resources in cattle, sheep, and goats are highly endangered, particularly in developed countries. It is therefore important to take measures that promote a sustainable management of these genetic resources; first, by in situ preservation of endangered breeds; second, by using selection programmes to restore the genetic diversity of industrial breeds; and finally, by protecting the wild relatives that might provide useful genetic resources. [source]


Insights on the evolution of a vegetatively propagated crop species

MOLECULAR ECOLOGY, Issue 14 2007
KENNETH M. OLSEN
The opportunity for gene flow between a vegetatively propagated crop and its wild relatives is expected to be much lower than for seed-propagated crops, since sexual reproduction in the crop occurs only infrequently. A study by Duputié and colleagues now demonstrates evidence of sexual reproduction between a vegetatively propagated crop and a closely related wild congener. Working in French Guiana, these workers have documented a hybrid zone arising from introgression between cassava (Manihot esculenta ssp. esculenta, Euphorbiaceae), which is propagated by stem cuttings, and wild Manihot populations growing in close proximity. Patterns of heterozygosity suggest that there are little,to,no barriers to reproduction between the crop and these wild populations. Previous work by these researchers has documented the importance of occasional sexual reproduction for the development of cassava varieties in traditional Amerindian farming systems. Taken together with their previous work, these new findings suggest that gene flow between wild Manihot populations and cassava plants could potentially play a much greater role in the crop's evolution than previously thought. [source]


Transgene escape: what potential for crop,wild hybridization?

MOLECULAR ECOLOGY, Issue 7 2005
T. T. ARMSTRONG
Abstract To date, regional surveys assessing the risk of transgene escape from GM crops have focused on records of spontaneous hybridization to infer the likelihood of crop transgene escape. However, reliable observations of spontaneous hybridization are lacking for most floras, particularly outside Europe. Here, we argue that evidence of interspecific reproductive compatibility derived from experimental crosses is an important component of risk assessment, and a useful first step especially where data from field observations are unavailable. We used this approach to assess the potential for transgene escape via hybridization for 123 widely grown temperate crops and their indigenous and naturalized relatives present in the New Zealand flora. We found that 66 crops (54%) are reproductively compatible with at least one other indigenous or naturalized species in the flora. Limited reproductive compatibility with wild relatives was evident for a further 12 crops (10%). Twenty-five crops (20%) were found to be reproductively isolated from all their wild relatives in New Zealand. For the remaining 20 crops (16%), insufficient information was available to determine levels of reproductive compatibility with wild relatives. Our approach may be useful in other regions where spontaneous crop,wild hybridization has yet to be well documented. [source]


Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene

MOLECULAR ECOLOGY, Issue 7 2004
Ana Lucía Caicedo
Abstract Phylogeographical studies are emerging as a powerful tool for understanding the population structure and evolution of wild relatives of crop species. Because of their value as genetic resources, there is great interest in exploring the distribution of variation in wild relatives of cultivated plants. In this study, we use sequence variation from the nuclear gene, fruit vacuolar invertase (Vac), to investigate the population history of Solanum pimpinellifolium. Solanum pimpinellifolium is a close relative of the cultivated tomato and has repeatedly served as a source of valuable traits for crop improvement. We sequenced the second intron of the Vac gene in 129 individuals, representing 16 populations from the northern half of Peru. Patterns of haplotype sharing among populations indicate that there is isolation by distance. However, there is no congruence between the geographical distribution of haplotypes and their genealogical relationships. Levels of outcrossing decrease towards the southernmost populations, as previously observed in an allozyme study. The geographical pattern of Vac variation supports a centre of origin in northern Peru for S. pimpinellifolium and a gradual colonization along the Pacific coast. This implies that inbreeding populations are derived from outcrossing ones and that variation present at the Vac locus predates the spread of S. pimpinellifolium. The expansion of cities and human agricultural activity in the habitat of S. pimpinellifolium currently pose a threat to the species. [source]


Tracing back seed and pollen flow within the crop,wild Beta vulgaris complex: genetic distinctiveness vs. hot spots of hybridization over a regional scale

MOLECULAR ECOLOGY, Issue 6 2004
Frédérique Viard
Abstract Hybrids between transgenic crops and wild relatives have been documented successfully in a wide range of cultivated species, having implications on conservation and biosafety management. Nonetheless, the magnitude and frequency of hybridization in the wild is still an open question, in particular when considering several populations at the landscape level. The Beta vulgaris complex provides an excellent biological model to tackle this issue. Weed beets contaminating sugar beet fields are expected to act as a relay between wild populations and crops and from crops-to-crops. In one major European sugar beet production area, nine wild populations and 12 weed populations were genetically characterized using cytoplasmic markers specific to the cultivated lines and nuclear microsatellite loci. A tremendous overall genetic differentiation between neighbouring wild and weed populations was depicted. However, genetic admixture analyses at the individual level revealed clear evidence for gene flow between wild and weed populations. In particular, one wild population displayed a high magnitude of nuclear genetic admixture, reinforced by direct seed flow as evidenced by cytoplasmic markers. Altogether, weed beets were shown to act as relay for gene flow between crops to wild populations and crops to crops by pollen and seeds at a landscape level. [source]


Isolation and characterization of sequence-tagged microsatellite sites markers in chickpea (Cicer arietinum L.)

MOLECULAR ECOLOGY RESOURCES, Issue 3 2003
Niroj K. Sethy
Abstract In this study we report the isolation of microsatellite sequences and their conversion to sequence-tagged microsatellite sites (STMS) markers in chickpea (Cicer arietinum L.). Thirteen putative recombinants isolated from a chickpea genomic library were sequenced, and used to design 10 STMS primer pairs. These were utilized to analyse the genetic polymorphism in 15 C. arietinum varieties and two wild varieties, C. echinospermum and C. reticulatum. All the primer pairs amplified polymorphic loci ranging from four to seven alleles per locus. The observed heterozygosity ranged from 0 to 0.6667. Most of the STMS markers also amplified corresponding loci in the wild relatives suggesting conservation of these markers in the genus. Hence, these polymorphic markers will be useful for the evaluation of genetic diversity and molecular mapping in chickpea. [source]


Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle

MOLECULAR ECOLOGY RESOURCES, Issue 1 2002
Andrew J. Lowe
Abstract We present a new set of 12 highly polymorphic simple sequence repeat primer sequences for use with Brassica species. These new primers, and four from A.K.S. SzewcMcFadden and colleagues, were tested in four Brassica species (B. rapa, B. napus, B. oleracea and B. nigra). Most primers successfully amplified products within all species and were polymorphic. Due to the risk of gene flow from GM oilseed rape to its wild relatives, hybrid formation in the Brassicaceae is of great interest. We identify six primer pairs as specific to the A, B or C genomes that could be used to identify such hybrids. [source]


Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeonpea (Cajanus cajan)

MOLECULAR ECOLOGY RESOURCES, Issue 4 2001
M. J. Burns
Abstract Pigeonpea (Cajanus cajan) is an important subsistence crop in India where traditional landraces and improved hybrids are grown alongside each other. Gene flow may result in genetic erosion of these landraces and their wild relatives, whilst transgene escape from future genetically engineered varieties is another potential hazard. To assess the impact of these factors gene flow needs to be measured. A set of 10 simple sequence repeat markers have been developed, which exhibit polymorphism across a range of pigeonpea varieties. Use of these markers also offers an efficient system for the assessment of genetic diversity within populations of pigeonpea. [source]


Born to run: competition enhances the spread of genes from crops to wild relatives

NEW PHYTOLOGIST, Issue 3 2007
Lorne M. Wolfe
No abstract is available for this article. [source]


Manipulation of in vivo pollination techniques to improve the fertilization efficiency of interspecies crosses in the genus Phaseolus

PLANT BREEDING, Issue 2 2007
V. Gurusamy
Abstract Phaseolus angustissimus A. Gray contains genes for traits of interest for dry bean (P. vulgaris) breeders. F1 hybrids can be produced but introgression through backcrossing has been a problem. One of the main impediments is the time required between pollination and fertilization when F1 hybrids of P. vulgaris/P. angustissimus are backcrossed with P. vulgaris. In an attempt to reduce this time, the effect of alternative pollination techniques was studied. The rate and the time of fertilization were ascertained using three different pollen types (pollen germinated in vitro, fresh pollen (FP) mixed in pollen-germinating media and FP), and two methods of pollination (cut-style and stigmatic pollinations). An optimal in vitro pollen germination medium for Phaseolus pollen was developed. Low temperatures (6,9°C) were demonstrated to be necessary for Phaseolus pollen germination. Pollination using a cut-style technique coupled with pregerminated pollen reduced the time for fertilization in the backcrosses of interspecies hybrids by approximately 28 h. This technique improved the success rate of fertilization in wide crosses of Phaseolus designed to introgress genes from wild relatives. [source]


A cytogenetic study of the progenies of hybrids between Brassica napus and Brassica oleracea, Brassica bourgeaui, Brassica cretica and Brassica montana

PLANT BREEDING, Issue 2 2002
N. InomataArticle first published online: 28 JUN 200
Abstract In this cytogenetic study the progeny of all crosses were investigated in F1, F2 and backcross (BC1) hybrids. Brassica napus and F1 hybrids between B. napus and B. oleracea, and between B. napus and three wild relatives of B. oleracea (B. bourgeaui, B. cretica and B. montana). Each of the wild relatives has 18 somatic chromosomes. Interspecific F1 hybrids were obtained through ovary culture mean. These had 28 and 37 chromosomes and their mean pollen fertility was 10.7% and 93.0%, respectively. Many F2 and BC1 seeds were harvested from the F1 hybrids with 37 chromosomes after self-pollination and open pollination of the F1 hybrids, and backcrossing with B. napus. Many aneuploids were obtained in the F2 and BC1 plants. It is evident from these investigations that the F1 hybrids may serve as bridge plants to improve B. napus and other Brassica crops. [source]