Home About us Contact | |||
Wild Mice (wild + mouse)
Selected AbstractsDistribution of the C1473G polymorphism in tryptophan hydroxylase 2 gene in laboratory and wild miceGENES, BRAIN AND BEHAVIOR, Issue 5 2010D. V. Osipova The neurotransmitter serotonin is implicated in the regulation of various forms of behavior, including aggression, sexual behavior and stress response. The rate of brain serotonin synthesis is determined by the activity of neuronal-specific enzyme tryptophan hydroxylase 2. The missense C1473G substitution in mouse tryptophan hydroxylase 2 gene has been shown to lower the enzyme activity and brain serotonin level. Here, the C1473G polymorphism was investigated in 84 common laboratory inbred strains, 39 inbred and semi-inbred strains derived from wild ancestors (mostly from Eurasia) and in 75 wild mice trapped in different locations in Russia and Armenia. Among all the classical inbred strains studied, only substrains of BALB/c, A and DBA, as well as the IITES/Nga and NZW/NSlc strains were homozygous for the 1473G allele. In contrast to laboratory strains, the 1473G allele was not present in any of the samples from wild and wild-derived mice, although the wild mice varied substantially in the C1477T neutral substitution closely linked to the C1473G polymorphism. According to these results, the frequency of the 1473G allele in natural populations does not exceed 0.5%, and the C1473G polymorphism is in fact a rare mutation that is possibly eliminated by the forces of natural selection. [source] Wild mouse open field behavior is embedded within the multidimensional data space spanned by laboratory inbred strainsGENES, BRAIN AND BEHAVIOR, Issue 5 2006E. Fonio The vast majority of studies on mouse behavior are performed on laboratory mouse strains (Mus laboratorius), while studies of wild-mouse behavior are relatively rare. An interesting question is the relationship between the phenotypes of M. laboratorius and the phenotypes of their wild ancestors. It is commonly believed, often in the absence of hard evidence, that the behavior of wild mice exceeds by far, in terms of repertoire richness, magnitude of variables and variability of behavioral measures, the behavior of the classical inbred strains. Having phenotyped the open field behavior (OF) of eight of the commonly used laboratory inbred strains, two wild-derived strains and a group of first-generation-in-captivity local wild mice (Mus musculus domesticus), we show that contrary to common belief, wild-mouse OF behavior is moderate, both in terms of end-point values and in terms of their variability, being embedded within the multidimensional data space spanned by laboratory inbred strains. The implication could be that whereas natural selection favors moderate locomotor behavior in wild mice, the inbreeding process tends to generate in mice, in some of the features, extreme and more variable behavior. [source] Development of a swine model of secondary liver tumor from a genetically induced swine fibroblast cell lineHPB, Issue 3 2008R. Abbas Abstract Aim. Metastatic disease is the most common liver tumor. Although alternative therapies have been developed for non-surgical candidates, those therapies lacked ideal testing prior to clinical application because of a paucity of large animal models. The purpose of the present study was to develop a model for secondary liver tumor in a large animal. Material and methods. Fibroblasts were isolated from swine ear lobules and then transfected with amphotrophic retroviruses encoding human or murine genetic material (hTERT, p53DD, cyclinD-1, CDK4R24C, Myc T58A, RasG12V). Transformed cell lines were finally inoculated subcutaneously (s.c.) into: 1) immunodeficient mice (nude), 2) immunocompetent mice (wild type), 3) immunosuppressed swine (under tacrolimus or corticosteroids), 4) immunocompetent swine, and 5) into the liver and portal circulation of swine under steroid-based immunosuppression. Results. In the murine model, tumor growth was evident in 100% of the nude mice (n=5), with a peak size of 20 mm (15.22±4.5 mm; mean±SD) at the time of sacrifice (3 weeks). Tumor growth was evident in 71% of the wild mice (n=21), with a peak size of 7.8 mm (4.19±1.1 mm) by the third week of growth. In the swine model, tumor growth was evident in 75% (3/4 ears; n=2) of swine under tacrolimus-based immunosuppression versus 50% of swine under steroids-based immunosuppression (n=2). Tumor growth was slow in two animals, while in one animal the tumor was larger with a peak growth of 42 mm at 3 weeks. The tumor pattern in the ear lobules was characterized by slow growth, with a peak size of 6,8 mm in the immunocompetent swine at 3 weeks. All tumors were shown to be malignant by histology. In contrast, inoculums of the transformed fibroblast cell line in swine livers showed no evidence of tumor growth at 3 weeks. Conclusions. Development of a transformed swine fibroblast cell line was successful, resulting in an in vivo malignant tumor. Cell line inoculums had tumorigenic properties in nude mice, wild-type mice, and immunosuppressed swine, as judged by uncontrolled cell growth, invasion of surrounding tissue, neoangiogenesis, and invasion of normal vasculature, resulting in the formation of tumor nodules. Such properties were not observed in swine upon inoculation into the liver/portal circulation. [source] The coronary arteries of the C57BL/6 mouse strains: implications for comparison with mutant modelsJOURNAL OF ANATOMY, Issue 1 2008B. Fernández Abstract There are few detailed descriptions of the coronary arterial patterns in the mouse. Some recent reports on coronary anomalies in mutant mouse models have uncovered the importance of several genes (i.e. iv and connexin43) in coronary morphogenesis. These mutations spontaneously appeared (iv) or were generated (connexin43) in a C57BL/6 background, which is widely used for the development of mutant mice. We have studied the origin and course of the main coronary arteries of two C57BL/6 mouse strains. Unusual anatomical coronary arterial patterns were found, including: solitary ostium in aorta, accessory ostium, high take-off, aortic intramural course, slit-like ostium, sinus-like ostium and origin of a septal artery from the left coronary artery. In humans, some of these conditions are clinically relevant. Most of these patterns, which differ from those observed in wild mice and Swiss albino mice, coincide with those previously found in iv/iv and connexin43 knockout mice. The results indicate that there is variability in the coronary arterial arrangement of the laboratory mouse. Care should be taken when analysing coronary phenotypes of mutant mouse models. [source] Does caloric restriction extend life in wild mice?AGING CELL, Issue 6 2006James M. Harper Summary To investigate whether mice genetically unaltered by many generations of laboratory selection exhibit similar hormonal and demographic responses to caloric restriction (CR) as laboratory rodents, we performed CR on cohorts of genetically heterogeneous male mice which were grandoffspring of wild-caught ancestors. Although hormonal changes, specifically an increase in corticosterone and decrease in testosterone, mimicked those seen in laboratory-adapted rodents, we found no difference in mean longevity between ad libitum (AL) and CR dietary groups, although a maximum likelihood fitted Gompertz mortality model indicated a significantly shallower slope and higher intercept for the CR group. This result was due to higher mortality in CR animals early in life, but lower mortality late in life. A subset of animals may have exhibited the standard demographic response to CR in that the longest-lived 8.1% of our animals were all from the CR group. Despite the lack of a robust mean longevity difference between groups, we did note a strong anticancer effect of CR as seen in laboratory rodents. Three plausible interpretations of our results are the following: (1) animals not selected under laboratory conditions do not show the typical CR effect; (2) because wild-derived animals eat less when fed AL, our restriction regime was too severe to see the CR effect; or (3) there is genetic variation for the CR effect in wild populations; variants that respond to CR with extended life are inadvertently selected for under conditions of laboratory domestication. [source] Are mice calorically restricted in nature?AGING CELL, Issue 4 2003Steven N. Austad Summary An important question about traditional caloric restriction (CR) experiments on laboratory mice is how food intake in the laboratory compares with that of wild mice in nature. Such knowledge would allow us to distinguish between two opposing views of the anti-aging effect of CR , whether CR represents, in laboratory animals, a return to a more normal level of food intake, compared with excess food consumption typical of laboratory conditions or whether CR represents restriction below that of animals living in nature, i.e. the conditions under which house mice evolved. To address this issue, we compared energy use of three mouse genotypes: (1) laboratory-selected mouse strains (= laboratory mice), (2) house mice that were four generations or fewer removed from the wild (= wild-derived mice) and (3) mice living in nature (= wild mice). We found, after correcting for body mass, that ad libitum fed laboratory mice eat no more than wild mice. In fact, under demanding natural conditions, wild mice eat even more than ad libitum fed laboratory mice. Laboratory mice do, however, eat more than wild-derived mice housed in similar captive conditions. Therefore, laboratory mice have been selected during the course of domestication for increased food intake compared with captive wild mice, but they are not particularly gluttonous compared with wild mice in nature. We conclude that CR experiments do in fact restrict energy consumption beyond that typically experienced by mice in nature. Therefore, the retarded aging observed with CR is not due to eliminating the detrimental effects of overeating. [source] The Absence of Phosphorylated Tyrosine Hydroxylase Expression in the Purkinje Cells of the Ataxic Mutant Pogo MouseANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 3 2006N. S. Lee Summary The pogo mouse is a new ataxic autosomal recessive mutant that arose in Korean wild mice (KJR/Mskist). Its ataxic phenotype includes difficulty in maintaining a normal posture and the inability to walk in a straight line. Several studies have reported that tyrosine hydroxylase (TH) is persistently ectopically expressed in particular subsets of Purkinje cells in a parasagittal banding pattern in several ataxic mutant mice, e.g. tottering alleles and pogo mice. In this present study, we examined the expression of an enzymatically active form of TH and phosphorylated TH at Ser40 (phospho-TH) by using immunohistochemistry and double immunofluorescence in the cerebellum of pogo mice. TH immunostaining appeared in some Purkinje cells in pogo, but in only a few of Purkinje cells of their heterozygous littermate controls. In all groups of mice, no phospho-TH immunoreactive Purkinje cells were observed in the cerebellum, although subsets of TH immunoreactive Purkinje cells were found in adjacent sections. This study suggests that TH expression in the Purkinje cells of pogo abnormally increases without activation of this enzyme by phosphorylation. This may mean that TH in the Purkinje cells of these mutants does not catalyse the conversion of tyrosine to l -DOPA, and is not related to catecholamine synthesis. [source] The specialist seed predator Bruchidius dorsalis (Coleoptera: Bruchidae) plays a crucial role in the seed germination of its host plant, Gleditsia japonica (Leguminosae)FUNCTIONAL ECOLOGY, Issue 2 2002K. Takakura Summary 1,This paper describes the germination mechanism of hard seeds of a species of honey locust, Gleditsia japonica, which can germinate only when externally damaged, in relation to four germinating factors: feeding damage by two specialist seed predators, a bean weevil (Bruchidius dorsalis) and a cydid bug (Adrisa magna); feeding damage by a generalist seed predator, a wild mouse (Apodemus speciosus); and physical damage. 2,In laboratory experiments, both the bean weevil and physical damage facilitated germination, while damage by the cydid bug and wild mouse did not. 3,In contrast to laboratory findings, field censuses of G. japonica seed survival revealed that more than 99% were damaged either by B. dorsalis or A. magna. Therefore, less than 0·5% of the seeds remained intact, preventing formation of a seed bank. 4,In addition, all germinating seeds found in the field contained B. dorsalis larvae. 5,These results strongly suggest that damage by B. dorsalis is a prerequisite for G. japonica germination, in contrast to the conventional view that physical disturbance, possibly flooding, is the primary germinating factor for hard seeds. [source] |