Widespread Resistance (widespread + resistance)

Distribution by Scientific Domains


Selected Abstracts


Widespread resistance of Mediterranean island ecosystems to the establishment of three alien species

DIVERSITY AND DISTRIBUTIONS, Issue 5 2008
Montserrat Vilà
ABSTRACT Although some invasive plants are cosmopolitan, not all ecosystems are invaded to the same degree. Yet there is little experimental work on how ecosystem resistance to invasion at the establishment phase differs among ecosystems. We conducted two field sowing experiments in two consecutive years to examine establishment of the deciduous tree Ailanthus altissima, the succulent subshrub Carpobrotus spp. and the annual geophyte Oxalis pes-caprae in coastal dunes, shrublands and oldfields in more than 200 sites across six Mediterranean Basin islands differing in climatic conditions and local species richness. Establishment success (i.e. percentage of plots with at least one seedling) and rates (i.e. seedling to sown seed ratio) were low, especially for Ailanthus even when accounting for differences in seed viability. Oxalis was capable of producing a new cohort of seedlings the year following planting. By contrast, all Ailanthus seedlings and half the Carpobrotus seedlings died following the first summer. Differences in establishment success and rates among ecosystems were species-, island- and year-dependent. Differences in precipitation and mean temperature were associated with differences in establishment rates across sites. Establishment rates tended to be positively correlated with cumulative precipitation and negatively with mean Ta. Unexpectedly, native species richness was not a good predictor of seedling establishment, except for higher Oxalis establishment success in species rich habitats. By conducting field sowing tests at multiple sites across a region we found that except for Oxalis, Mediterranean island ecosystems are quite resistant to invader establishment. These results suggest that differences in the degree of invasion between ecosystems and islands might be more dependent upon the influence of invasion event factors (e.g. propagule pressure) or factors acting at a later life-history stages rather than differences in the resistance imposed by ecosystems to invader recruitment. Moreover, our results support the notion that in Mediterranean ecosystems invasions are highly idiosyncratic events and strongly dependent on water availability conditions. [source]


Plasmodium falciparum growth is arrested by monoterpenes from eucalyptus oil

FLAVOUR AND FRAGRANCE JOURNAL, Issue 5 2008
Vanessa Su
Abstract Cerebral malaria is a major health problem in the developing world. Widespread resistance to existing drugs by the parasite Plasmodium falciparum has coincided with an increase in mortality, particularly in children. One potential source of new drugs comes from plant natural products. We found that commercially available, pharmaceutical grade eucalyptus oil and its principal component 1,8-cineole inhibited the growth and development of chloroquine-sensitive and chloroquine-resistant P. falciparum. This was true both when the oil was added directly to the parasite cultures and when cultures were exposed to the vapours. The development of the parasite was arrested at the early trophozoite stage, irrespective of when the oil was introduced. We used a new approach where the concentration of monoterpenes actually taken up by the cultures was measured directly using HS,GC. We found that the critical concentration required to inhibit and kill the parasite did not adversely affect the host erythrocytes, placing it in the range suitable for drug development. Given the ready availability and existing quality control of eucalyptus oils, this may represent an economically viable adjunct to current antimalarial therapies. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens

INSECT MOLECULAR BIOLOGY, Issue 6 2000
Graham J. Small
Abstract Widespread resistance to organophosphorus insecticides (OPs) in Nilaparvata lugens is associated with elevation of carboxylesterase activity. A cDNA encoding a carboxylesterase, Nl-EST1, has been isolated from an OP-resistant Sri Lankan strain of N. lugens. The full-length cDNA codes for a 547-amino acid protein with high homology to other esterases/lipases. Nl-EST1 has an N-terminal hydrophobic signal peptide sequence of 24 amino acids which suggests that the mature protein is secreted from cells expressing it. The nucleotide sequence of the homologue of Nl-EST1 in an OP-susceptible, low esterase Sri Lankan strain of N. lugens is identical to Nl-EST1. Southern analysis of genomic DNA from the Sri Lankan OP-resistant and susceptible strains suggests that Nl-EST1 is amplified in the resistant strain. Therefore, resistance to OPs in the Sri Lankan strain is through amplification of a gene identical to that found in the susceptible strain. [source]


Insecticide resistance in the malarial mosquito Anopheles arabiensis and association with the kdr mutation

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2007
T. S. MATAMBO
Abstract A colony of Anopheles arabiensis Patton (Diptera: Culicidae) from the Sennar region of Sudan was selected for resistance to dichlorodiphenyltrichloroethane (DDT). Adults from the F-16 generation of the resistant strain were exposed to all four classes of insecticides approved for use in malaria vector control and showed high levels of resistance to them all (24-h mortalities: malathion, 16.7%; bendiocarb, 33.3%; DDT, 12.1%; dieldrin, 0%; deltamethrin, 24.0%; permethrin, 0%). Comparisons between the unselected base colony and the DDT-resistant strain showed elevated glutathione- S -transferase (P < 0.05) in both sexes and elevated esterases (P < 0.05) in males only. The Leu-Phe mutation in the sodium channel gene was detected by polymerase chain reaction and sequencing, but showed no correlation with the resistant phenotype. These results do not provide any explanation as to why this colony exhibits such widespread resistance and further studies are needed to determine the precise mechanisms involved. The implications for malaria vector control in central Sudan are serious and resistance management (e.g. through the rotational use of different classes of insecticides) is recommended. [source]


A novel substitution I381V in the sterol 14,-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides

MOLECULAR PLANT PATHOLOGY, Issue 3 2007
B. A. FRAAIJE
SUMMARY The recent reduction in the efficacy of azole fungicides in controlling Septoria leaf blotch of wheat, caused by Mycosphaerella graminicola, has prompted concerns over possible development of resistance, particularly in light of the recent emergence of widespread resistance to quinone outside inhibitors (QoIs). We have recently implicated alterations in the target-encoding sterol 14,-demethylase protein (CYP51), and over-expression of genes encoding efflux pumps, in reducing sensitivity to the azole class of sterol demethylation inhibitors (DMIs) in M. graminicola. Here we report on the prevalence and selection of two CYP51 alterations, substitution I381V and deletion of codons 459 and 460 (,Y459/G460), in populations of M. graminicola. Neither alteration has previously been identified in human or plant pathogenic fungi resistant to azoles. The presence of ,Y459/G460 showed a continuous distribution of EC50 values across isolates with either I381 or V381, and had no measurable effect on azole sensitivity. Data linking fungicide sensitivity with the presence of I381V in M. graminicola show for the first time that a particular CYP51 alteration is differentially selected by different azoles in field populations of a plant pathogen. Substitution I381V although not an absolute requirement for reduced azole sensitivity, is selected by tebuconazole and difenoconazole treatment, suggesting an adaptive advantage in the presence of these two compounds. Prochloraz treatments appeared to select negatively for I381V, whereas other azole treatments did not or only weakly impacted on the prevalence of this substitution. These findings suggest treatments with different members of the azole class of fungicides could offer a resistance management strategy. [source]


Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2008
Pablo Bielza
Abstract Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an economically important pest of a wide range of crops grown throughout the world. Insecticide resistance has been documented in many populations of WFT. Biological and behavioural characteristics and pest management practices that promote insecticide resistance are discussed. In addition, an overview is provided of the development of insecticide resistance in F. occidentalis populations and the resistance mechanisms involved. Owing to widespread resistance to most conventional insecticides, a new approach to insecticide resistance management (IRM) of F. occidentalis is needed. The IRM strategy proposed consists of two parts. Firstly, a general strategy to minimise the use of insecticides in order to reduce selection pressure. Secondly, a strategy designed to avoid selection of resistance mechanisms, considering cross-resistance patterns and resistance mechanisms. Copyright © 2008 Society of Chemical Industry [source]


Are azole fungicides losing ground against Septoria wheat disease?

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 7 2008
Resistance mechanisms in Mycosphaerella graminicola
Abstract There has been a recent rapid decline in the efficacy of some, but not all, azole fungicides in controlling the Septoria leaf blotch pathogen of wheat, Mycosphaerella graminicola. Hans J. Cools and Bart A. Fraaije ask the question: can widespread resistance to all azoles develop in this pathogen? Copyright © 2008 Society of Chemical Industry [source]