Home About us Contact | |||
Wide-angle X-ray Scattering (wide-angle + x-ray_scattering)
Selected AbstractsWell-Defined Crystalline TiO2 Nanoparticles Generated and Immobilized on a Colloidal NanoreactorMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 5 2009Yan Lu Abstract We synthesized well-defined, crystalline TiO2 nanoparticles at room temperature by using spherical polyelectrolyte brush particles as a template. The template particles consist of a polystyrene core from which long chains of poly(styrene sodium sulfonate) are grafted. Tetraethylorthotitanate is hydrolyzed in the presence of brush particles leading to the formation of well-dispersed TiO2 nanoparticles (d,=,4,12 nm). Wide-angle X-ray scattering demonstrates that anatase nanoparticles with high crystallinity have been generated at room temperature. The as-prepared TiO2 nanocomposites present high photocatalytic activity for the degradation of Rhodamine B under UV irradiation. Finally, mesoporous TiO2 structures with defined pore size are formed after calcination. [source] Effect of clay/water ratio during bentonite clay organophilization on the characteristics of the organobentonites and its polypropylene nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 9 2009Suédina M.L. Silva A sodium bentonite (montmorillonite-based layered silicate clay) was organically modified with cetyl trimethyl ammonium bromide (cetrimide), using different clay/water ratios,but the same clay/cetrimide ratio,to suspend the bentonite clay and perform its organophilization. Infrared spectroscopy and thermogravimetric analysis indicated the incorporation of organic modifier into the bentonite. Wide-angle X-ray scattering showed that the incorporation of surfactant significantly increased the interlayer spacing in the bentonite for all concentrations studied. It was found that clay/water ratio employed during the modification affects neither the amount of organic salt incorporated nor the interlayer spacing in the organobentonites, but influences its degree of structural disorder. Lower clay/water ratios resulted in a more disorderly structure, as established by the decrease of the areas under the X-ray peaks as the clay/water ratio diminishes. The modified bentonites were melt compounded with maleic anhydride-grafted polypropylene. X-ray diffraction patterns of the hybrids revealed that the more disorderly organobentonites were better dispersed in the polymer matrix, indicating that, in the present system, the structure of polymer nanocomposites obtained were affected by the clay/water ratio used in organobentonite preparation. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source] Effect of melt processing conditions on the morphology and properties of nylon 6 nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 11 2007F. Chavarria Nylon 6 (PA-6) organoclay nanocomposites were prepared by melt processing using three different twin screw extruders (TSEs). The effect of mixing conditions, feed port location, residence time, and number of extrusion passes on the morphology and mechanical properties of the nanocomposites were examined. Wide-angle X-ray scattering, transmission electron microscopy (TEM), and mechanical property data are reported. Particle analyses were performed on the TEM images to quantitatively characterize the extent of exfoliation. The amount of shear and the mixing conditions created by TSEs have a significant effect on the morphology and properties of PA-6 nanocomposites. Morphology and mechanical property results show that (1) melting the polymer before coming into contact with the organoclay followed by a low level of shear and (2) maintaining a medium level of shear throughout the extruder with a longer residence time lead to extremely high platelet dispersion and matrix reinforcement for PA-6 nanocomposites. Nanocomposites formed in a DSM microcompounder showed similar morphologies and modulus trends as those obtained with conventional TSEs; thus, this microcompounder is a good alternative for nanocomposite research especially when only small amounts of material are available. POLYM. ENG. SCI., 47:1847,1864, 2007. © 2007 Society of Plastics Engineers [source] Crystallization of the , form in random propylene-ethylene copolymersPOLYMER INTERNATIONAL, Issue 12 2004Antonio Marigo Abstract Wide-angle X-ray scattering and differential scanning calorimetry measurements have been conducted on seven random copolymers of propylene with ethylene in order to study the , phase formation as a function of the comonomer content. The lamellar morphology of the samples was also investigated by small-angle X-ray scattering. The content of the , phase was found to go through a maximum with crystallization temperature and to increase with comonomer concentration, up to a point (ethylene ,6.5 wt%) where the latter parameter became less influential. The multiple melting endotherms behaviour of the samples was studied by DSC and temperature-controlled diffractometric techniques. The attribution of the DSC peaks to the different isotactic polypropylene polymorphs that form in these conditions was confirmed. The results obtained permitted us to ascertain that, in the experimental conditions chosen, some further formation of crystallites takes place during the quenching to room temperature after the crystallization isotherm. In this phase, the chains organize themselves in stacks with thin lamellae, forming a distinct population with respect to those formed on isothermal crystallization. The melting of the thinner lamellae determines a convergence of the two populations into just one, still retaining an organization in stacks, that gradually disappears until complete melting of the material. Copyright © 2004 Society of Chemical Industry [source] Formation of diffusion-hindering interlayers in metals in contact by dedicated thermal treatmentCRYSTAL RESEARCH AND TECHNOLOGY, Issue 1-2 2005D. C. Meyer Abstract Thermal evolution of the structure of Fe/Al multilayers (MLs) with nominal composition 5*(5 nm Al / 5 nm Fe) prepared by crossed-beam pulsed laser deposition is studied by wide-angle X-ray scattering and X-ray reflectometry after different temperature-time procedures of thermal treatments under high-vacuum conditions. In comparison to direct thermal annealing at temperatures of 250 °C and 275 °C, respectively, which results in nearly complete mixing of the MLs and formation of the FeAl intermetallic compound, quite different behaviour was found after dedicated thermal pretreatment. Annealing at successive growing temperatures before final annealing at temperatures mentioned, resulted in conservation of pronounced multilayer structure. From the results it is generalised, that also in the case of ML systems, the tendency of mixing a dedicated tuning of interface characteristics by thermal treatment allows for formation of diffusion-hindering interlayers. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Solution Processable Fluorenyl Hexa- peri -hexabenzocoronenes in Organic Field-Effect Transistors and Solar CellsADVANCED FUNCTIONAL MATERIALS, Issue 6 2010Wallace W. H. Wong Abstract The organization of organic semiconductor molecules in the active layer of organic electronic devices has important consequences to overall device performance. This is due to the fact that molecular organization directly affects charge carrier mobility of the material. Organic field-effect transistor (OFET) performance is driven by high charge carrier mobility while bulk heterojunction (BHJ) solar cells require balanced hole and electron transport. By investigating the properties and device performance of three structural variations of the fluorenyl hexa- peri -hexabenzocoronene (FHBC) material, the importance of molecular organization to device performance was highlighted. It is clear from 1H NMR and 2D wide-angle X-ray scattering (2D WAXS) experiments that the sterically demanding 9,9-dioctylfluorene groups are preventing ,,, intermolecular contact in the hexakis-substituted FHBC 4. For bis-substituted FHBC compounds 5 and 6, ,,, intermolecular contact was observed in solution and hexagonal columnar ordering was observed in solid state. Furthermore, in atomic force microscopy (AFM) experiments, nanoscale phase separation was observed in thin films of FHBC and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) blends. The differences in molecular and bulk structural features were found to correlate with OFET and BHJ solar cell performance. Poor OFET and BHJ solar cells devices were obtained for FHBC compound 4 while compounds 5 and 6 gave excellent devices. In particular, the field-effect mobility of FHBC 6, deposited by spin-casting, reached 2.8,×,10,3,cm2 V,1 s and a power conversion efficiency of 1.5% was recorded for the BHJ solar cell containing FHBC 6 and PC61BM. [source] Combining solution wide-angle X-ray scattering and crystallography: determination of molecular envelope and heavy-atom sitesJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2009Xinguo Hong Solving the phase problem remains central to crystallographic structure determination. A six-dimensional search method of molecular replacement (FSEARCH) can be used to locate a low-resolution molecular envelope determined from small-angle X-ray scattering (SAXS) within the crystallographic unit cell. This method has now been applied using the higher-resolution envelope provided by combining SAXS and WAXS (wide-angle X-ray scattering) data. The method was tested on horse hemoglobin, using the most probable model selected from a set of a dozen bead models constructed from SAXS/WAXS data using the program GASBOR at 5,Å resolution (qmax = 1.25,Å,1) to phase a set of single-crystal diffraction data. It was found that inclusion of WAXS data is essential for correctly locating the molecular envelope in the crystal unit cell, as well as for locating heavy-atom sites. An anomalous difference map was calculated using phases out to 8,Å resolution from the correctly positioned envelope; four distinct peaks at the 3.2, level were identified, which agree well with the four iron sites of the known structure (Protein Data Bank code 1ns9). In contrast, no peaks could be found close to the iron sites if the molecular envelope was constructed using the data from SAXS alone (qmax = 0.25,Å,1). The initial phases can be used as a starting point for a variety of phase-extension techniques, successful application of which will result in complete phasing of a crystallographic data set and determination of the internal structure of a macromolecule to atomic resolution. It is anticipated that the combination of FSEARCH and WAXS techniques will facilitate the initial structure determination of proteins and provide a good foundation for further structure refinement. [source] A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY IIJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2007Oskar Paris A new instrument for simultaneous microbeam small- and wide-angle X-ray scattering and X-ray fluorescence (SAXS/WAXS/XRF) is presented. The instrument is installed at the microfocus beamline at BESSY II and provides a beam of 10,µm size with a flux of about 109 photons,s,1. A SAXS resolution up to 500,Åd -spacing and a range of scattering vectors of almost three orders of magnitude are reached by using a large-area high-resolution CCD-based detector for simultaneous SAXS/WAXS. The instrument is particularly suited for scanning SAXS/WAXS/XRF experiments on hierarchically structured biological tissues. The necessary infrastructure, such as a cryo-stream facility and an on-site preparation laboratory for biological specimens, are available. [source] Small and wide-angle X-ray scattering study of metallocene isotactic poly(propylene)JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-1 2000P.S. Dai We report a study of metallocene isotactic poly(propylene) (m-iPP) which crystallizes into , and , crystal modifications. Simultaneous in-situ small- and wide-angle X-ray scattering (SAXS and WAXS) were used to study kinetics during crystallization. Both techniques provide information about time development of crystallinity, while WAXS gives also kinetics of formation of , and , crystals. During the earliest stages of crystal formation, the SAXS Bragg peak occurs simultaneously, or slightly lags, the appearance of crystalline WAXS reflections. We conclude crystallization occurs by a nucleation and growth process in this m-iPP. [source] Micromechanical behavior related to the nanostructure of biodegradable polyestersJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010M. E. Cagiao Abstract The microhardness of a series of biodegradable polyesters was determined. The nanostructural features of these materials were studied by wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and differential scanning calorimetry. Analysis of the SAXS and WAXS patterns allowed direct derivation of the degree of crystallinity and crystal thickness values, and correlations of the micromechanical properties are presented. The differences in the thermal and mechanical properties exhibited by the studied systems and the ones found in other aromatic polyesters are explained as due to the different chemical natures of the monomeric units. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Polyurethane/acrylate hybrids: Effects of the acrylic content and thermal treatment on the polymer propertiesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010Pablo J. Peruzzo Abstract Polyurethane (PU)/acrylate hybrids with different acrylic contents (10, 30, 50, 70, and 90 wt %) were prepared by the polymerization of acrylic monomers in the presence of preformed PU chains with polymerizable terminal vinyl groups. Films obtained by the casting of polymer dispersions before and after thermal annealing were characterized by dynamic light scattering, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), TEM electron energy-loss spectroscopy, differential scanning calorimetry, and gel fraction determination. Small-angle X-ray scattering (SAXS), wide-angle X-ray scattering, mechanical properties testing, atomic force microscopy, water contact angle testing, Buchholz hardness testing, and roughness testing of the films were also performed. The effects of the acrylic content and thermal treatment on the structure and properties were determined. TEM showed that a core,shell morphology was formed during polymerization. When the acrylic content increased, smaller particles without core,shell morphologies were observed. TEM energy-loss spectroscopy studies confirmed this observation. Systems with up to 50 wt % acrylic component were homogeneous, as determined by SAXS, before and after thermal annealing. An attempt to incorporate a higher amount of acrylic component led to phase-separated materials with a different morphology and, therefore, different properties. The relationship between the acrylic content and properties did not follow linear behavior. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Nanostructure and micromechanical properties of reversibly crosslinked isotactic polypropylene/clay compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010S. Bouhelal Abstract Recent developments concerning the methodology used to prepare composites of iPP and nanoclays are reported. Conventional (reactive melt mixing) and in situ preparations were performed, and the structural properties exhibited by the composites are discussed. Results suggest that the nanoclay could exhibit partial and, maybe, total exfoliation within the composites. Adhesion between the polymeric matrix and the nanoclay layers is similar to that obtained after grafting. The experimental procedure used and the analysis performed by means of the wide-angle X-ray scattering and differential scanning calorimetry techniques permit to describe, at nanoscale level, the contribution of the nanoclay to the polymer composite system. The microhardness values of the iPP,clay composites depend on the clay content and on the preparation method, and linearly correlate, according to the additivity law, with the degree of crystallinity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Polymer nanocomposites based on needle-like sepiolite clays: Effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical propertiesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008E. Bilotti Abstract Polypropylene (PP)/sepiolite (Sep) nanocomposites are prepared by melt compounding in a mini-extruder apparatus. The often used maleic anhydride-modified polypropylene (PP-g-MA) is compared with two custom-made functionalized polymers, PP-acid and the di-block copolymer PP-PEO, with respect to the filler dispersion and filler reinforcement efficiency. For that purpose, morphological and mechanical studies are carried out by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical tensile tests. In addition, the nanocomposites are characterized by wide-angle X-ray scattering (WAXS) and differential scanning calorimetric (DSC) techniques, to assess the effect of the nanofiller on the crystalline structure of the PP matrix nano-filler. The use of PP-PEO and PP-acid resulted in a better nanofiller dispersion compared with traditional PP-g-MA-modified systems. Sepiolite acts as nucleating agent for the crystallization of PP and seems to lead to an orientation of the ,-phase crystals. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Recycled PET nanocomposites improved by silanization of organoclaysJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2007Milan Krá, alík Abstract Recycled PET/organo-modified montmorillonite nanocomposites were prepared via melt compounding as a promising possibility of the used beverage bottles recovery. According to our previous work, the three suitable commercial organoclays Cloisite 25A, 10A, and 30B were additionally modified with [3-(glycidyloxy)propyl]trimethoxysilane, hexadecyltrimethoxysilane and (3-aminopropyl)trimethoxysilane. The selected organoclays were compounded in the concentration 5 wt % and their degree of intercalation/delamination was determined by wide-angle X-ray scattering and transmission electron microscopy. Modification of Cloisite 25A with [3-(glycidyloxy)propyl]trimethoxysilane increased homogeneity of silicate layers in recycled PET. Additional modification of Cloisite 10A and Cloisite 30B led to lower level of delamination concomitant with melt viscosity reduction. However, flow characteristics of all studied organoclay nanocomposites showed solid-like behavior at low frequencies. Silanization of commercial organoclays had remarkable impact on crystallinity and melt temperature decrease accompanied by faster formation of crystalline nuclei during injection molding. Thermogravimetric analysis showed enhancement of thermal stability of modified organoclays. The tensile tests confirmed significant increase of PET-R stiffness with organoclays loading and the system containing Cloisite 25A treated with [3-(glycidyloxy)propyl]trimethoxysilane revealed combination of high stiffness and extensibility, which could be utilized for production of high-performance materials by spinning, extrusion, and blow molding technologies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source] Morphology and mechanical and viscoelastic properties of rubbery epoxy/organoclay montmorillonite nanocompositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007Amar Boukerrou Abstract The morphology and mechanical and viscoelastic properties of rubbery epoxy/organoclay montmorillonite (MMT) nanocomposites were investigated with wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), tensile testing, and dynamic mechanical thermal analysis. An ultrasonicator was used to apply external shearing forces to disperse the silicate clay layers in the epoxy matrix. The first step of the nanocomposite preparation consisted of swelling MMT in a curing agent, that is, an aliphatic diamine based on a polyoxypropylene backbone with a low viscosity for better diffusion into the intragalleries. Then, the epoxy prepolymer was added to the mixture. Better dispersion and intercalation of the nanoclay in the matrix were expected. The organic modification of MMT with octadecylammonium ions led to an increase in the initial d -spacing (the [d001] peak) from 14.4 to 28.5 Å, as determined by WAXS; this indicated the occurrence of an intercalation. The addition of 5 phr MMTC18 (MMT after the modification) to the epoxy matrix resulted in a finer dispersion, as evidenced by the disappearance of the diffraction peak in the WAXS pattern and TEM images. The mechanical and viscoelastic properties were improved for both MMT and MMTC18 nanocomposites, but they were more pronounced for the modified ones. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 103: 3547,3552, 2007 [source] Structure modification of isotactic polypropylene through chemical crosslinking: Toughening mechanismJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2007S. Bouhelal Abstract Reversibly crosslinked isotactic polypropylene (iPP) was prepared in the presence of dicumyl peroxide. The effects of the peroxide oxy-radicals in the melt were investigated in relation to the modification of the polymer. The dynamic rheology analysis of the crosslinking process was carried out by using a plastograph. The crosslinking reaction was evaluated by the Monsanto method. The resulting structure of the modified samples was studied by means of differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), microhardness, and mechanical properties. The degree of crystallinity of the modified iPP, derived from DSC and WAXS, remains almost unchanged, i.e., the crystalline structure is unaffected, though the lamellar thickness slightly decreases. The impact strength of the crosslinked iPP is greatly improved with reference to that of the unmodified material. A transition from brittle to ductile behavior appears in the modified iPP for all the crosslinking agents studied. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2968,2976, 2007 [source] DIATOM SILICA BIOMINERALIZATION: AT NANOSCALE LEVEL A CHEMICALLY UNIFORM PROCESSJOURNAL OF PHYCOLOGY, Issue 2000E. G. Vrieling Using a high-brilliance synchrotron X-ray source, combined small- and wide-angle X-ray scattering (SAXS and WAXS) was applied to study nanoscale characteristics, in particular pore size in the range of 3 to 65 nm, of a variety of unialgal cultures of centric and pennate diatoms, and of mixed diatom populations sampled in the field. Results of scattering analysis were compared with details of pore size, structure and orientation visible at the electron microscopic level. WAXS patterns did not reveal any crystalline phase or features of microcrystallinity (resolution 0.07 to 0.51 nm), which implies a totally amorphous character of the SiO2 matrix of the frustule material. SAXS data (resolution 3 to 65 nm) provided information on geometry, size, and distribution of pores in the silica. Overall, two pore regions were recognized that were common to the silica of all samples: the smallest (d less than 10 nm) regularly spaced and shaped spherically, the larger (up to 65 nm) being cylinders or slits. Apparently, at a nanoscale level diatomaceous silica is quite homologous among species, in agreement with the chemical principles of silica polymerization under the conditions of pH and precursor concentrations inside the silicon deposition vesicle. The final frustule "macro"-morphology is of course species-specific, being determined genetically. Synthetically-derived MCM-type silicas have a similarly organized pore distribution in an amorphous silica matrix as we found in all diatom species studied. We therefore suggest that organic molecules of a kind used as structure-directing agents to produce these artificial silicas play a role in the nucleation of the silica polymerization reaction and the shaping of pore morphology inside the silicon deposition vesicle of diatoms. Structure-directing molecules now await isolation from the SDV, followed by identification and characterisation by molecular techniques. [source] Novel side-chain liquid-crystalline polyimide for film materialsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 4 2003Haojun Fan Abstract A novel side-chain liquid-crystalline polyimide (SLCPI) was prepared via copolycondensation from 3,5-diamino-benzonic-4,-biphenyl ester, 4,4,-diamino- biphenyl ether, and 3,3,,4,4,-oxydiphthalic dianhydride. The energy-minimized structure and liquid crystallinity of SLCPI were investigated by molecular modeling, differential scanning calorimetry (DSC), wide-angle X-ray scattering, and polarized optical microscopy, respectively. The results indicated that this polyimide (PI) with side-chain mesogenic units exhibited a nematic NI phase. Because of the in situ self-reinforcement of side-chain mesogenic units, the improved tensile strength and modulus of PI films reached 270% and 300%, respectively. The coefficient of thermal expansion of films decreased by 40%. DSC and thermogravimetric analyses indicated that the phase-transition temperature of SLCPI was above 240 °C, and the 5% weight-loss temperature was above 520 °C. Moreover, copolycondensation of two diamines with dianhydride and incorporation of pendent mesogenic units diminished the regularity and symmetry of main chains; as a result, SLCPI exhibits good film processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 554,559, 2003 [source] Poly(ester urethane)s with polycaprolactone soft segments: A morphological studyJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2002Juliana Kloss Abstract Two series of poly(ester urethane)s were prepared, containing polycaprolactone (PCL) as the soft segment with molecular weights of 530 and 2000. In each series, the soft-segment/hard-segment ratio was varied, and the morphological changes were monitored with differential scanning calorimetry, dynamic mechanical thermal analysis, wide-angle X-ray scattering, and scanning electron microscopy techniques. The polyurethanes with longer PCL segments retained their crystallinity, whereas those with shorter PCL segments did not. A morphological model is proposed, in which a continuous PCL-rich matrix contains both PCL crystallites and domains of urethane hard segments. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4117,4130, 2002 [source] Synthesis and structure of wholly aromatic liquid,crystalline polyesters containing meta- and ortholinkagesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2001Chaobin He Abstract Wholly aromatic main-chain rigid-chain polymers containing meta- and orthokink linkages were synthesized. The thermal property, liquid crystallinity, and crystalline structure were studied using DSC, polarized light microscopy, and wide-angle X-ray scattering. These polymers exhibited liquid crystallinity up to 50 mol % of meta- and orthokink linkages. The existence of liquid crystallinity in these polymers may be attributed to the adoption of cis conformation in kink units in these polymers because the energy penalty for doing so can be compensated by the formation of the liquid,crystalline phase. The crystallinity of the polymers was low, and the crystal structure was quite similar to that of the pure polymers (without kink units). This can be explained by that fact that the crystal region mainly consists of the nonkink units, and the kink units disrupt the crystallization of the polymers and form defects. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1242,1248, 2001 [source] High-resolution wide-angle X-ray scattering of protein solutions: effect of beam dose on protein integrityJOURNAL OF SYNCHROTRON RADIATION, Issue 5 2003Robert F. Fischetti Wide-angle X-ray scattering patterns from proteins in solution contain information relevant to the determination of protein fold. At relevant scattering angles, however, these data are weak, and the degree to which they might be used to categorize the fold of a protein is unknown. Preliminary work has been performed at the BioCAT insertion-device beamline at the Advanced Photon Source which demonstrates that one can collect X-ray scattering data from proteins in solution to spacings of at least 2.2,Å (q = 2.8,Å,1). These data are sensitive to protein conformational states, and are in good agreement with the scattering predicted by the program CRYSOL using the known three-dimensional atomic coordinates of the protein. An important issue in the exploitation of this technique as a tool for structural genomics is the extent to which the high intensity of X-rays available at third-generation synchrotron sources chemically or structurally damage proteins. Various data-collection protocols have been investigated demonstrating conditions under which structural degradation of even sensitive proteins can be minimized, making this technique a viable tool for protein fold categorization, the study of protein folding, unfolding, protein,ligand interactions and domain movement. [source] Melt Structure and its Transformation by Sequential Crystallization of the Two Blocks within Poly(L -lactide)- block -Poly(, -caprolactone) Double Crystalline Diblock CopolymersMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006I. W. Hamley Abstract Summary: Sequential crystallization of poly(L -lactide) (PLLA) followed by poly(, -caprolactone) (PCL) in double crystalline PLLA- b -PCL diblock copolymers is studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). Three samples with different compositions are studied. The sample with the shortest PLLA block (32 wt.-% PLLA) crystallizes from a homogeneous melt, the other two (with 44 and 60% PLLA) from microphase separated structures. The microphase structure of the melt is changed as PLLA crystallizes at 122,°C (a temperature at which the PCL block is molten) forming spherulites regardless of composition, even with 32% PLLA. SAXS indicates that a lamellar structure with a different periodicity than that obtained in the melt forms (for melt segregated samples). Where PCL is the majority block, PCL crystallization at 42,°C following PLLA crystallization leads to rearrangement of the lamellar structure, as observed by SAXS, possibly due to local melting at the interphases between domains. POM results showed that PCL crystallizes within previously formed PLLA spherulites. WAXS data indicate that the PLLA unit cell is modified by crystallization of PCL, at least for the two majority PCL samples. The PCL minority sample did not crystallize at 42,°C (well below the PCL homopolymer crystallization temperature), pointing to the influence of pre-crystallization of PLLA on PCL crystallization, although it did crystallize at lower temperature. Crystallization kinetics were examined by DSC and WAXS, with good agreement in general. The crystallization rate of PLLA decreased with increase in PCL content in the copolymers. The crystallization rate of PCL decreased with increasing PLLA content. The Avrami exponents were in general depressed for both components in the block copolymers compared to the parent homopolymers. Polarized optical micrographs during isothermal crystallization of (a) homo-PLLA, (b) homo-PCL, (c) and (d) block copolymer after 30 min at 122,°C and after 15 min at 42,°C. [source] Structure and Phase Transitions of Poly(heptamethylene p,p,-bibenzoate): Time-Resolved Synchrotron WAXS and DSC StudiesMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 14 2003Ernesto Pérez Abstract Time-resolved wide-angle X-ray scattering (WAXS), as well as differential scanning calorimetry (DSC) and polarisation microscopy studies, were applied to investigate the structure and phase transitions of poly(heptamethylene p,p,-bibenzoate). Temperature dependencies of several structural parameters were determined. Complete transformation from an isotropic melt to a smectic phase was suggested whereas the transition from a smectic to crystalline phase is only partial (around 30%), although it takes place from the ordered SCA phase. Crystals are formed within the SCA domains with nearly the same coherent length. On the basis of the analysis of the position and the profile of the diffuse wide-angle X-ray scattering and mesogenic layer spacing, it was assumed that either crystallisation modifies the smectic structure, or mesophase losses its positional order because of the lack of mobility of the spacers at low temperatures. WAXS scattering profiles corresponding to P7MB: a) cooling from the isotropic melt at 2,°C,·,min,1; b) subsequent melting at 12,°C,·,min,1. [source] Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approachesACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2010Sebastian Westenhoff Proteins undergo conformational changes during their biological function. As such, a high-resolution structure of a protein's resting conformation provides a starting point for elucidating its reaction mechanism, but provides no direct information concerning the protein's conformational dynamics. Several X-ray methods have been developed to elucidate those conformational changes that occur during a protein's reaction, including time-resolved Laue diffraction and intermediate trapping studies on three-dimensional protein crystals, and time-resolved wide-angle X-ray scattering and X-ray absorption studies on proteins in the solution phase. This review emphasizes the scope and limitations of these complementary experimental approaches when seeking to understand protein conformational dynamics. These methods are illustrated using a limited set of examples including myoglobin and haemoglobin in complex with carbon monoxide, the simple light-driven proton pump bacteriorhodopsin, and the superoxide scavenger superoxide reductase. In conclusion, likely future developments of these methods at synchrotron X-ray sources and the potential impact of emerging X-ray free-electron laser facilities are speculated upon. [source] Extrusion of polyethylene/polypropylene blends with microfibrillar-phase morphologyPOLYMER COMPOSITES, Issue 8 2010Martina Polaskova Extrusion of immiscible polymers under special conditions can lead to creation of microfibrillar-phase morphology, ensuring significant increase of mechanical properties of polymer profiles. Polyethylene/polypropylene blend extrudates with microfibrillar-phase morphology (polypropylene microfibrils reinforcing polyethylene matrix phase) were prepared through continuous extrusion with semihyperbolic-converging die enabling elongation and orientation of microfibrils in flow direction. Structure of extruded profiles was examined using electron microscopy and wide-angle X-ray scattering. Tensile tests proved that extrudates with microfibrillar-phase morphology show significantly higher mechanical properties than the conventional extrudates. The presented concept offers possibility of replacing the existing expensive multi-component medical devices with fully polymeric tools. POLYM. COMPOS., 31:1427,1433, 2010. © 2009 Society of Plastics Engineers [source] Recycling of poly(ethylene terephthalate) as polymer-polymer composites,POLYMER ENGINEERING & SCIENCE, Issue 4 2002M. Evstatiev Microfibrillar reinforced composites (MFC) comprising an isotropic matrix from a lower melting polymer reinforced by microfibrils of a higher melting polymer were manufactured under industrially relevant conditions and processed via injection molding. Low density polyethylene (LDPE) (matrix) and recycled poly(ethylene terephthalate) (PET) (reinforcing material) from bottles were melt blended (in 30/70 and 50/50 PET/LDPE wt ratio) and extruded, followed by continuous drawing, pelletizing and injection molding of dogbone samples. Samples of each stage of MFC manufacturing and processing were characterized by means of scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS), dynamic mechanical thermal analysis (DMTA), and mechanical testing. SEM and WAXS showed that the extruded blend is isotropic but becomes highly oriented after drawing, being converted into a polymer-polymer composite upon injection molding at temperatures below the melting temperature of PET. This MFC is characterized by an isotropic LDPE matrix reinforced by randomly distributed PET microfibrils, as concluded from the WAXS patterns and SEM observations. The MFC dogbone samples show impressive mechanical properties,the elastic modulus is about 10 times higher than that of LDPE and about three times higher than reinforced LDPE with glass spheres, approaching the modulus of LDPE reinforced with 30 wt% short-glass fibers (GF). The tensile strength is at least two times higher than that of LDPE or of reinforced LDPE with glass spheres, approaching that of reinforced LDPE with 30 wt% GF. The impact strength of LDPE increases by 50% after reinforcement with PET. It is concluded that: (i) the MFC approach can be applied in industrially relevant conditions using various blend partners, and (ii) the MFC concept represents an attractive alternative for recycling of PET as well as other polymers. [source] Copolymers based on poly(butylene terephthalate) and polycaprolactone- block -polydimethylsiloxane- block -polycaprolactonePOLYMER INTERNATIONAL, Issue 6 2010Vesna V Anti Abstract A series of novel thermoplastic elastomers, based on poly(butylene terephthalate) (PBT) and polycaprolactone- block -polydimethylsiloxane- block -polycaprolactone (PCL-PDMS-PCL), with various mass fractions, were synthesized through melt polycondensation. In the synthesis of the poly(ester-siloxane)s, the PCL blocks served as a compatibilizer for the non-polar PDMS blocks and the polar comonomers dimethyl terephthalate and 1,4-butanediol. The introduction of PCL-PDMS-PCL soft segments resulted in an improvement of the miscibility of the reaction mixture and therefore in higher molecular weight polymers. The content of hard PBT segments in the polymer chains was varied from 10 to 80 mass%. The degree of crystallinity of the poly(ester-siloxane)s was determined using differential scanning calorimetry and wide-angle X-ray scattering. The introduction of PCL-PDMS-PCL soft segments into the polymer main chains reduced the crystallinity of the hard segments and altered related properties such as melting temperature and storage modulus, and also modified the surface properties. The thermal stability of the poly(ester-siloxane)s was higher than that of the PBT homopolymer. The inclusion of the siloxane prepolymer with terminal PCL into the macromolecular chains increased the molecular weight of the copolymers, the homogeneity of the samples in terms of composition and structure and the thermal stability. It also resulted in mechanical properties which could be tailored. Copyright © 2010 Society of Chemical Industry [source] Hydroxyapatite as a filler for biosynthetic PHB homopolymer and P(HB,HV) copolymersPOLYMER INTERNATIONAL, Issue 7 2003Antje Bergmann Abstract This paper deals with some of the fundamental problems encountered when using a semicrystalline polymer as the matrix phase for a particulate-filled composite. As our model system we adopted poly-(R)-3-hydroxybutyrate, PHB, and two copolymers of (R)-3-hydroxybutyrate and (R)-3-hydroxyvalerate, P(HB,HV), for the matrix phase, and the mineral calcium hydroxyapatite as a particulate filler. The structure and properties of compression-moulded films of various compositions were investigated by polarized light microscopy, wide-angle X-ray scattering and mechanical testing. It was found that the degree of crystallinity of the matrix was lower in filled samples, and that the spherulitic crystallization of the matrix appeared to cause the filler particles to form agglomerates, which would not be as effective a reinforcement as finely dispersed primary filler particles. The tensile strength, strain-to-break and tensile modulus of samples of different compositions were analysed using well-known theories for composite behaviour. Copyright © 2003 Society of Chemical Industry [source] The effect of shear on mechanical properties and orientation of HDPE/mica composites obtained via dynamic packing injection molding (DPIM)POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 1 2010Yufang Xiang Abstract The interfacial interaction and orientation of filler play important roles in the enhancement of mechanical performances for polymer/inorganic filler composites. Shear has been found to be a very effective way for the enhancement of interfacial interaction and orientation. In this work, we will report our recent efforts on exploring the development of microstructure of high density polyethylene (HDPE)/mica composites in the injection-molded bars obtained by so-called dynamic packing injection molding (DPIM), which imposed oscillatory shear on the melt during the solidification stage. The mechanical properties were evaluated by tensile testing and dynamic mechanical analysis (DMA), and the crystal morphology, orientation, and the dispersion of mica were characterized by scanning electron microscopy and two-dimensional wide-angle X-ray scattering. Compared with conventional injection molding, DPIM caused an obvious increase in orientation for both HDPE and mica. More importantly, better dispersion and epitaxial crystallization of HDPE was observed on the edge of the mica in the injection-molded bar. As a result, increased tensile strength and modulus were obtained, accompanied with a decrease of elongation at break. The obtained data were treated by Halpin,Tsai model, and it turned out that this model could be also used to predict the stiffness of oriented polymer/filler composites. Copyright © 2009 John Wiley & Sons, Ltd. [source] The role of irregular unit, GAAS, on the secondary structure of Bombyx mori silk fibroin studied with 13C CP/MAS NMR and wide-angle X-ray scatteringPROTEIN SCIENCE, Issue 8 2002Tetsuo Asakura Abstract Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room temperature and from an aqueous solution. The primary structure is mainly Ala-Gly alternative copolypeptide, but Gly-Ala-Ala-Ser units appear frequently and periodically. Thus, this study aims at elucidating the role of such Gly-Ala-Ala-Ser units on the secondary structure. The sequential model peptides containing Gly-Ala-Ala-Ser units selected from the primary structure of B. mori silk fibroin were synthesized, and their secondary structure was studied with 13C CP/MAS NMR and wide-angle X-ray scattering. The 13C isotope labeling of the peptides and the 13C conformation-dependent chemical shifts were used for the purpose. The Ala-Ala units take antiparallel ,-sheet structure locally, and the introduction of one Ala-Ala unit in (Ala-Gly)15 chain promotes dramatical structural changes from silk I (repeated ,-turn type II structure) to silk II (antiparallel ,-sheet structure). Thus, the presence of Ala-Ala units in B. mori silk fibroin chain will be one of the inducing factors of the structural transition for silk fiber formation. The role of Tyr residue in the peptide chain was also studied and clarified to induce "locally nonordered structure." [source] |