Width Half Maximum (width + half_maximum)

Distribution by Scientific Domains

Kinds of Width Half Maximum

  • full width half maximum


  • Selected Abstracts


    Solvent dependent study of carbonyl vibrations of 3-phenoxybenzaldehyde and 4-ethoxybenzaldehyde by Raman spectroscopy and ab initio calculations

    JOURNAL OF RAMAN SPECTROSCOPY, Issue 8 2009
    Veerabahu Ramakrishnan
    Abstract A Raman spectroscopy investigation of the carbonyl stretching vibrations of 3-phenoxybenzaldehye (3Phbz) and 4-ethoxybenzaldeheyde (4Etob) was carried out in binary mixtures with different polar and nonpolar solvents. The purpose of this study was twofold: firstly, to describe the interaction of the carbonyl groups of two solute molecules in terms of a splitting in the isotropic and anisotropic components and secondly, to analyze their spectroscopic signatures in a binary mixture. Changes in wavenumber position, variation in the anisotropic shift and full width half maximum were investigated for binary mixtures with different mole fractions of the reference systems. In binary mixtures, the observed increase in wavenumber with solvent concentration does not show linearity, indicating the significant role of molecular interactions on the occurrence of breaking of the self-association of the solute. In all the solvents, a gradual decrease in the anisotropic shift reflects the progressive separation of the coupled oscillators with dilution. ,i(,c), 3Phbz,solvent mixtures, exhibit a gradual decrease with decrease in the concentration of the solute which is an evidence on the influence of micro viscosity on linewidth. For 4Etob, the carbonyl stretching vibration shows two well-resolved components in the Raman spectra, attributed to the presence of two distinct carbonyl groups: hydrogen-bonded and free carbonyl groups. The intensity ratio of the carbonyl stretching vibration of these two types of carbonyl groups is studied to understand the dynamics of solute/solvent molecules owing to hydrogen bond interactions. Ab initio calculations were employed for predicting relevant molecular structures in the binary mixtures arising from intermolecular interactions, and are related to the experimental results. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Concentration dependent Raman and IR study on salicylaldehyde in binary mixtures

    JOURNAL OF RAMAN SPECTROSCOPY, Issue 12 2007
    A. Anis Fathima
    Abstract A vibrational spectroscopic study of binary mixtures of salicylaldehyde (SA) in three different solvents (polar and nonpolar) is presented. The vibrational modes ,(CO), hydroxyl stretching mode (COH) and aldehydic (CH) stretching vibration were analyzed. Changes in wavenumber position and full width half maximum have been explained for neat as well as binary mixtures with different volume fractions of the reference system, SA, in terms of inter- and intramolecular hydrogen bonding. The IR spectra of these mixtures have also been taken and compared with the Raman data. The spectral changes have been well explained using the concentration fluctuation model and solute,solvent interaction. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    InxGa1,xAs single crystal growth by dispersing local misfit stress

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 11 2006
    Hiroaki Miyata
    Abstract We succeeded in growing a single crystal by dispersing the misfit stress around an initial solid-liquid interface in In0.3Ga0.7As ternary bulk crystal growth. We gradually increased concentration of indium arsenide so that the local misfit stress could be smaller than critical resolved shear stress. The traveling lqiuidus-zone (TLZ) method was applied for growing crystals. To grow a single In0.3Ga0.7As crystal, an In0.1Ga0.9As single crystal region was grown first on a GaAs seed. Then the concentration of indium arsenide was gradually increased up to In0.3Ga0.7As by lowering temperature at the interface. As a result, In0.3Ga0.7As single crystals of 2 mm in thickness, 10 mm in width and more than 25 mm in length were successfully obtained. Mean value of full width half maximum (FWHM) of X-ray rocking curves in the In0.3Ga0.7As grown crystal was 0.116°. It is not small enough but it will be improved by increasing compositional homogeneity. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Fabrication of thick AlN film by low pressure hydride vapor phase epitaxy

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2006
    Yu-Huai Liu
    Abstract Thick AlN crystals were grown by conventional hydride vapor phase epitaxy (HVPE) on AlN/sapphire templates under low pressure (,15 Torr) at high temperature (1100 °C,1200 °C). Colorless, mirror-like AlN films were obtained at the growth rates of up to 20.6 ,m/h. The best root mean square (RMS) value of atomic force microscope (AFM) observations for the AlN surface was 0.19 nm in a surface of 5×5 ,m2. The typical values of full width half maximum (FWHM) of X-ray rocking curves for (0002) and (102) diffraction of AlN films were 173,314 arcsec and 1574,1905 arcsec, respectively. We also investigated the influences of carrier gas, growth temperature and growth rate on the crystal quality. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]