Whole Leaf (whole + leaf)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Leaf volatiles as attractants for neonate Helicoverpa armigera Hbn. (Lep., Noctuidae) larvae

JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2002
A. K. Singh
The 1st instar Helicoverpa armigera larvae were bioassayed in the laboratory to study their orientational responses towards leaf volatiles of four leguminous crops: chickpea, Cicer arietinum L.; pigeonpea, Cajanus cajan Millsp.; blackgram, Vigna mungo L.; and cowpea, Vigna unguiculata L. (Walp.). The gram podborer larvae showed positive orientational responses towards leaves of all four test plants. Whole leaves of chickpea, pigeonpea and blackgram were more attractive for gram podborer larvae than cowpea whole leaves. Larval attraction for crushed (damaged) leaves of chickpea, blackgram and cowpea was significantly higher than the attraction for pigeonpea crushed leaves. The orientational responses of gram podborer larvae for crushed leaves of cowpea were significantly higher compared to whole leaves. However, the whole pigeonpea leaves elicited higher orientational responses than the crushed leaves. Maceration was not observed to affect the attractancy of chickpea and blackgram leaves. Further, the leaves were extracted in n-hexane and methanol. It was observed that the crude extracts of all the test leaves elicited positive orientational responses of larvae. In no-choice tests, the orientational preference of the larvae for the hexane extracts of all the test leaves was statistically equal. Similarly, the methanol extracts of leaves of all the test plants also attracted a greater percentage of larvae in no-choice tests. However, under two-choice bioassays, hexane foliage extract of all the test plants elicited higher orientational responses of larvae compared to the methanolic extracts of same leaves. The results of these bioassays clearly indicate that all the test leaves emit kairomones for gram podborer larvae. Moreover, kairomonal components of these leaves are, at least in part, extractable in hexane and methanol, which are higher in hexane than methanol. [source]


Effects of Fusaric Acid on Reactive Oxygen Species and Antioxidants in Tomato Cell Cultures

JOURNAL OF PHYTOPATHOLOGY, Issue 10 2001
E. Ku
Generation of O2, and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid , a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2, production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found. [source]


The influence of long-term Aloe vera ingestion on age-related disease in male Fischer 344 rats

PHYTOTHERAPY RESEARCH, Issue 8 2002
Yuji Ikeno
Abstract The effects of long-term Aloe vera ingestion on age-related diseases were investigated using male specific pathogen-free (SPF) Fischer 344 rats. Experimental animals were divided into four groups: Group A, the control rats fed a semi-synthetic diet without Aloe vera; Group B, rats fed a diet containing 1% freeze-dried Aloe vera filet; Group C, rats fed a diet containing 1% charcoal-processed, freeze-dried Aloe vera filet; and Group D, rats fed the control diet and given whole leaf charcoal-processed Aloe vera (0.02%) in the drinking water. This study demonstrates that life-long Aloe vera ingestion produced neither harmful effects nor deleterious changes. In addition, Aloe vera ingestion appeared to be associated with some beneficial effects on age-related diseases. Groups B exhibited significantly less occurrence of multiple causes of death, and a slightly lower incidence of fatal chronic nephropathy compared with Group A rats. Groups B and C rats showed the trend, slightly lower incidences of thrombosis in the cardiac atrium than Group A rats. Therefore, these findings suggest that life-long Aloe vera ingestion does not cause any obvious harmful and deleterious side effects, and could also be beneficial for the prevention of age-related pathology. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts

PLANT CELL & ENVIRONMENT, Issue 9 2009
CHRISTINE GRANIER
ABSTRACT The leaf is a multi-scale dynamic unit that is determined by mechanisms at different organizational scales (cell, tissue, whole leaf and whole plant) and affected by both internal (genotype) and external (environmental) determinisms. The recent development of phenotyping platforms and imaging techniques provides new insights into the temporal and spatial patterns of leaf growth as affected by those determinisms. Conclusions about the overriding mechanisms often depend on the considered organizational scale and of time resolution which varies from minutes to several weeks. Analyses of leaf growth responses to environmental conditions have revealed robust emerging properties at whole plant or whole leaf scales. They have highlighted that the control of individual leaf expansion is more complex than merely the sum of cellular processes, and the control at the whole plant level is more complex than the sum of individual leaf expansions. However, in many cases, the integrated leaf-growth variable can be simplified to a limited set of underlying variables to be measured for comparative analyses of leaf growth or modelling purposes. [source]


Changes in mesophyll anatomy and sink,source relationships during leaf development in Quercus glauca, an evergreen tree showing delayed leaf greening

PLANT CELL & ENVIRONMENT, Issue 5 2003
S.-I. MIYAZAWA
ABSTRACT Changes in mesophyll anatomy, gas exchange, and the amounts of nitrogen and cell wall constituents including cellulose, hemicellulose and lignin during leaf development were studied in an evergreen broad-leaved tree, Quercus glauca, and in an annual herb, Phaseolus vulgaris. The number of chloroplasts per whole leaf in P. vulgaris increased and attained the maximal level around 10 d before full leaf area expansion (FLE), whereas it continued to increase even after FLE in Q. glauca. The increase in the number of palisade tissue cells per whole leaf continued until a few days before FLE in Q. glauca, but it had almost ceased by 10 d before FLE in P. vulgaris. The radius and height of palisade tissue cells in Q. glauca, attained their maximal levels at around FLE whereas the thickness of the mesophyll cell wall and concentrations of the cell wall constituents increased markedly after FLE. These results clearly indicated that, in Q. glauca, chloroplast development proceeded in parallel with the cell wall thickening well after completion of the mesophyll cell division and cell enlargement. The sink,source transition, defined to be the time when the increase in daily carbon exchange rate exceeds the daily increase in leaf carbon content, occurred before FLE in P. vulgaris but after FLE in Q. glauca. During leaf area expansion, the maximum daily increase in nitrogen content on a whole leaf basis (the maximum leaf areas were corrected to be identical for these species) in Q. glauca was similar to that in P. vulgaris. In Q. glauca, however, more than 70% of nitrogen in the mature leaf was invested during its sink phase, whereas in P. vulgaris it was 50%. These results suggest that Q. glauca invests nitrogen for cell division for a considerable period and for chloroplast development during the later stages. We conclude that the competition for nitrogen between cell division and chloroplast development in the area of expanding leaves can explain different greening patterns among plant species. [source]


Maintenance of narrow diet breadth in the monarch butterfly caterpillar: response to various plant species and chemicals

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2-3 2002
Danel B. Vickerman
Abstract In order to better understand the maintenance of a fairly narrow diet breadth in monarch butterfly larvae, Danaus plexippus L. (Lepidoptera: Nymphalidae: Danainae), we measured feeding preference and survival on host and non-host plant species, and sensitivity to host and non-host plant chemicals. For the plant species tested, a hierarchy of feeding preferences was observed; only plants from the Asclepiadaceae were more or equally preferred to Asclepias curassavica, the common control. The feeding preferences among plant species within the Asclepiadaceae are similar to published mean cardenolide concentrations. However, since cardenolide data were not collected from individual plants tested, definitive conclusions regarding cardenolide concentrations and plant acceptability cannot be made. Although several non-Asclepiadaceae were eaten in small quantities, all were less preferred to A. curassavica. Additionally, these non-Asclepiadaceae do not support continued feeding, development, and survival of first and fifth-instar larvae. Preference for a host versus a non-host (A. curassavica versus Vinca rosea) increased for A. curassavica reared larvae as compared to diet-reared larvae suggesting plasticity in larval food preferences. Furthermore, host species were significantly preferred over non-host plant species in bioassays using a host plant or sucrose as a common control. Larval responses to pure chemicals were examined in order to determine if host and non-host chemicals stimulate or deter feeding in monarch larvae. We found that larvae were stimulated to feed by some ubiquitous plant chemicals, such as sucrose, inositol, and rutin. In contrast, several non-host plant chemicals deterred feeding: caffeine, apocynin, gossypol, tomatine, atropine, quercitrin, and sinigrin. Additionally the cardenolides digitoxin and ouabain, which are not in milkweed plants, were neutral in their influence on feeding. Another non-milkweed cardenolide, cymarin, significantly deterred feeding. Extracts of A. curassavica leaves were tested in bioassays to determine which components of the leaf stimulate feeding. Both an ethanol extract of whole leaves and a hexane leaf-surface extract are phagostimulatory, suggesting the involvement of both polar and non-polar plant compounds. These data suggest that the host range of D. plexippus larvae is maintained by both feeding stimulatory and deterrent chemicals in host and non-host plants. [source]


Leaf volatiles as attractants for neonate Helicoverpa armigera Hbn. (Lep., Noctuidae) larvae

JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2002
A. K. Singh
The 1st instar Helicoverpa armigera larvae were bioassayed in the laboratory to study their orientational responses towards leaf volatiles of four leguminous crops: chickpea, Cicer arietinum L.; pigeonpea, Cajanus cajan Millsp.; blackgram, Vigna mungo L.; and cowpea, Vigna unguiculata L. (Walp.). The gram podborer larvae showed positive orientational responses towards leaves of all four test plants. Whole leaves of chickpea, pigeonpea and blackgram were more attractive for gram podborer larvae than cowpea whole leaves. Larval attraction for crushed (damaged) leaves of chickpea, blackgram and cowpea was significantly higher than the attraction for pigeonpea crushed leaves. The orientational responses of gram podborer larvae for crushed leaves of cowpea were significantly higher compared to whole leaves. However, the whole pigeonpea leaves elicited higher orientational responses than the crushed leaves. Maceration was not observed to affect the attractancy of chickpea and blackgram leaves. Further, the leaves were extracted in n-hexane and methanol. It was observed that the crude extracts of all the test leaves elicited positive orientational responses of larvae. In no-choice tests, the orientational preference of the larvae for the hexane extracts of all the test leaves was statistically equal. Similarly, the methanol extracts of leaves of all the test plants also attracted a greater percentage of larvae in no-choice tests. However, under two-choice bioassays, hexane foliage extract of all the test plants elicited higher orientational responses of larvae compared to the methanolic extracts of same leaves. The results of these bioassays clearly indicate that all the test leaves emit kairomones for gram podborer larvae. Moreover, kairomonal components of these leaves are, at least in part, extractable in hexane and methanol, which are higher in hexane than methanol. [source]


Is heterosis in maize mediated through better water use?

NEW PHYTOLOGIST, Issue 2 2010
José Luis Araus
Summary ,Heterosis increases yield potential and improves adaptation to stress in maize (Zea mays); however, the underlying mechanisms remain elusive. ,A set of tropical inbred lines and their hybrids were grown in the field for 2 yr under three different water regimes. First-year plant water use was evaluated by measuring instantaneous traits (stomatal conductance (gs) and steady-state chlorophyll fluorescence (Fs)) in individual leaves together with time-integrative traits, which included mineral accumulation in the whole leaves of plants and oxygen isotope enrichment above source water (,18O) and carbon isotope discrimination (,13C) in the same pooled leaves and in mature kernels. Second-year water use was evaluated by measuring leaf temperature, gs and relative water content (RWC). ,Within each growing condition, hybrids showed higher Fs, mineral accumulation, RWC, and lower leaf temperature, ,18O and ,13C than inbred lines. Therefore, hybrids had a better water status than inbred lines, regardless of the water conditions. Differences in grain yield across growing conditions were explained by differences in water-use traits, with hybrids and inbred lines following a common pattern. Within each growing condition, most variations in grain yield, between hybrids and inbred lines, were also explained by differences in plant water-use traits. ,Heterosis in tropical maize seems to be mediated by improved water use, irrespective of the water conditions during growth. [source]