Whole Bacteria (whole + bacteria)

Distribution by Scientific Domains


Selected Abstracts


Signalling mechanisms for Toll-like receptor-activated neutrophil exocytosis: key roles for interleukin-1-receptor-associated kinase-4 and phosphatidylinositol 3-kinase but not Toll/IL-1 receptor (TIR) domain-containing adaptor inducing IFN-, (TRIF)

IMMUNOLOGY, Issue 3 2009
Agnieszka A. Brzezinska
Summary Lipopolysaccharide (LPS) stimulates exocytosis in neutrophils. The signalling molecules involved in the regulation of this mechanism are currently unknown. Using neutrophils from interleukin-1-receptor-associated kinase (IRAK)-4- and Toll/IL-1 receptor (TIR) domain-containing adaptor inducing IFN-, (TRIF)-deficient mice, we dissected the signalling pathways that control exocytosis. We analysed exocytosis of peroxidase-negative and azurophilic granules by following the mobilization of the ,2-integrin subunit CD11b and myeloperoxidase (MPO)-containing granules, respectively. IRAK-4-null neutrophils showed marked defects in both peroxidase-negative and azurophilic granule exocytosis in response to LPS. In contrast, the exocytic response to LPS of TRIF-deficient neutrophils was not different from that of wild-type cells. No differences were observed in the exocytosis of secretory organelles between IRAK-4-null and wild-type neutrophils when they were stimulated with the phorbol ester phorbol 12-myristate 13-acetate (PMA). Electron microscopy analysis showed that no morphological abnormalities were present in the granules of IRAK-4-deficient neutrophils, suggesting that the lack of exocytic response to LPS is not attributable to developmental abnormalities. Using pharmacological inhibitors, we found that p38 mitogen-activated protein kinase (p38MAPK) is essential for the exocytosis of all neutrophil secretory organelles in response to LPS. Interestingly, we found that phosphatidylinositol 3-kinase (PI3K) is essential for azurophilic granule exocytosis but not for the mobilization of other neutrophil granules in response to LPS. Azurophilic granule exocytosis in response to Listeria monocytogenes was dependent on PI3K but not IRAK-4 activity, suggesting that alternative signalling pathways are activated in IRAK-4-deficient neutrophils exposed to whole bacteria. Our results identified IRAK-4, p38MAPK and PI3K as important regulatory components with different roles in the signalling pathways that control Toll-like receptor ligand-triggered neutrophil exocytosis. [source]


Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine,

INFLAMMATORY BOWEL DISEASES, Issue 2 2008
Sreedhar Subramanian MD
Abstract Background: Mucosally adherent E. coli are found in inflammatory bowel disease (IBD) and colon cancer. They promote release of the proinflammatory cytokine interleukin-8 (IL-8). We explored mechanisms for this release and its inhibition by drugs. Methods: IL-8 release from colon epithelial cells in response to mucosal E. coli isolates from IBD, colon cancer, and controls was characterized at the cellular and molecular level. Results: IL-8 response of HT29 cells was greater with Crohn's disease (689 ± 298 [mean ± SD] pg IL-8/mL at 4 hours, n = 7) and colon cancer isolates (532 ± 415 pg/mL, n = 14) than with ulcerative colitis (236 ± 58 pg/mL, n = 6) or control isolates (236 ± 100 pg/mL, n = 6, P < 0.0001). Bacterial supernatants contained shed flagellin that triggered IL-8 release. For whole bacteria the IL-8 response to E. coli that agglutinate red blood cells (548 ± 428 pg IL-8/mL, n = 16), a function that correlates with epithelial invasion, was greater than for nonhemagglutinators (281 ± 253 pg/mL, n = 17; P < 0.0001). This was particularly marked among E. coli that, although flagellate, could not release IL-8 from TLR5-transfected HEK293 cells. IL-8 release was mediated by extracellular-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and inhibited by mesalamine, but not hydrocortisone, at therapeutic concentrations. Conclusions: Mucosa-associated E. coli shed flagellin that elicits epithelial IL-8 release but this may only become relevant when the mucosal barrier is weakened to expose basolateral TLR5. Adherent and invasive IBD and colon cancer E. coli isolates also elicit a flagellin-independent IL-8 response that may be relevant when the mucosal barrier is intact. The IL-8 release is MAPK-dependent and inhibited by mesalamine. (Inflamm Bowel Dis 2007) [source]


Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation

JOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2004
C. Maldonado Galdeano
Abstract Aims:, To determine how probiotic bacteria contact with intestinal epithelial and immune cells and the conditions to induce a good mucosal immune stimulation. Methods and Results:,Lactobacillus casei was studied by transmission electron microscopy (TEM) to determine its interaction with the gut. We compared the influence of viable and nonviable lactic acid bacteria on the intestinal mucosal immune system (IMIS) and their persistence in the gut of mice. TEM showed whole Lact. casei adhered to the villi; the bacterial antigen was found in the cytoplasm of the enterocytes. Viable bacteria stimulated the IMIS to a greater extent than nonviable bacteria with the exception of Lact. delbrueckii subsp. bulgaricus. For all the strains assayed at 72 h no antigenic particles were found in the intestine. Conclusion:, Antigenic particles but not the whole bacteria can enter to epithelial cells and contact with the immune cells. Bacterial viability is a condition for a better stimulation of the IMIS. Significance and Impact of the Study:, We demonstrated that only antigenic particle interact with the immune cells and their fast clearance from the gut agrees with those described for the particulate antigens. The regular consumption of probiotics should not adversely affect the host. [source]


Raman spectroscopy for rapid discrimination of Staphylococcus epidermidis clones related to medical device-associated infections

LASER PHYSICS LETTERS, Issue 6 2008
O. Samek
Abstract We report on the potential application of Raman spectroscopy for the fast typing of Staphylococcus epidermidis (S. epidermidis) strains related to medical device-associated infections. In this study bacterial colonies were directly probed on culture plates and Raman spectra were recorded from volumes containing approximately 10 bacteria. The spectra contain information on the molecular composition of the whole bacteria, such as fatty acids, carbohydrates, proteins and nucleic acids, DNA as well as RNA. We demonstrate the potential to discriminate different S. epidermidis clones, even after only short Raman exposure/collection times. (© 2008 by Astro Ltd., Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source]