Home About us Contact | |||
Whey Protein Films (whey + protein_film)
Selected AbstractsAntimicrobial Effects of Lactoferrin, Lysozyme, and the Lactoperoxidase System and Edible Whey Protein Films Incorporating the Lactoperoxidase System Against Salmonella enterica and Escherichia coli O157:H7JOURNAL OF FOOD SCIENCE, Issue 7 2005Seacheol Min ABSTRACT: Lactoferrin (LF), lysozyme (LZ), the lactoperoxidase system (LPOS), and edible whey protein isolate (WPI) films incorporating LPOS were studied for inhibition of Salmonella enterica and Escherichia coli O157:H7. Antimicrobial effects of LF (5 to 40 mg/mL), LZ (1 to 20 mg/mL), and LPOS (0.5% to 5.0% [w/v] [0.03,.25 g/g, dry basis]) were examined by measuring turbidity of antimicrobial-containing media after inoculation and by examining cell inhibition by WPI films incorporating LPOS (LPOS-WPI films) on an agar recovery medium. Elastic modulus (EM), tensile strength (TS), percent elongation (%E), oxygen permeability (OP), and Hunter L, a and b of WPI films incorporating 0.03 to 0.25 g/g of LPOS were compared with those of plain WPI films without LPOS. The growth of S. enterica and E. coli O157:H7 (4 log colony-forming units [CFU]/mL) in tryptic soy broth (TSB) was not prevented by LF at ,20 and ,40 mg/mL, respectively. S. enterica and E. coli O157:H7 in TSB were not inhibited by LZ at , 6 and , 20 mg/mL, respectively. LPOS at concentrations of 2.75% (w/v) and 1.0% (w/v) reduced S. enterica and E. coli O157:H7 to below the limit of detection (1 CFU/mL) in TSB, respectively. LPOS-WPI films (0.15 g/g) completely inhibited S. enterica and E. coli O157:H7 (4 log CFU/cm2), inoculated either onto agar before placing the film disc or onto top of the film disc. Incorporation of 0.25 g/g of LPOS decreased EM, TS, and %E. The oxygen barrier property of WPI films was improved with the incorporation of LPOS at 0.15 to 0.25 g/g. [source] Plasticizing Effects of Beeswax and Carnauba Wax on Tensile and Water Vapor Permeability Properties of Whey Protein FilmsJOURNAL OF FOOD SCIENCE, Issue 3 2005Pau Talens ABSTRACT: The possible plasticizing effect of beeswax (viscoelastic wax) and carnauba wax (elastic wax) on tensile and water vapor permeability properties of whey protein isolate (WPI) films was studied. For the experiments, 3 groups of films with different WPI:glycerol ratios (1:1; 1.5:1; 2:1, 2.5:1, and 3:1) were prepared. The 1st group was made without the addition of wax, and the latter 2 groups were made with the addition of beeswax and carnauba wax, respectively, mixing 1 part of wax to 1 part of WPI. Lipid particle size, water vapor permeability, tensile properties, and thickness of films were analyzed and measured. The results show that the incorporation of beeswax produced a plasticizing effect in WPI:glycerol films, whereas carnauba wax produced an anti-plasticizing effect. The moisture barrier properties of WPI:glycerol films benefit from the addition of beeswax, by both increase of the hydrophobic character and decrease of the amount of hydrophilic plasticizer required in the film. [source] Moisture adsorption by milk whey protein filmsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 3 2002C. M. P. Yoshida Edible films, using whey protein as the structural matrix, were tested for water vapour diffusion properties. Whey protein films were prepared by dispersing 6.5% whey protein concentrate (WPC) in distilled water with pH kept at 7.0. Glycerol was the plasticizer agent. Film slabs (13.5 × 3.5 cm) were put in a chamber at 25 °C and 75% relative humidity, being held in vertical planes for different periods of time. The mass gain was determined throughout the experiment. We show that moisture adsorption by milk whey protein films is well described by a linear diffusion equation model. After an adsorption experiment was performed the solution of the diffusion equation was fitted to the data to determine the diffusion coefficient of the material. [source] EFFECT OF OLIVE OIL AND GLYCEROL ON PHYSICAL PROPERTIES OF WHEY PROTEIN CONCENTRATE FILMSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 5 2008MAJID JAVANMARD ABSTRACT Olive oil was incorporated into whey protein through emulsification to produce films. Whey protein films were prepared by dispersing 10% protein in distilled water; and plasticized with different levels of glycerol (glycerol : protein [Gly : pro ] = 0.5 and 0.6). Olive oil was added at different levels (oil : pro = 0.0, 0.2, 0.3 and 0.4). The emulsion films were evaluated for mechanical properties, water vapor permeability (WVP) and opacity. Increasing the levels of Gly or olive oil in the films led to decreases in modulus and tensile strength. Increasing Gly content of films at oil/pro ratios of 0.2, 0.4 led to slight increases in elongation (EL). Increasing the oil : pro ratio further resulted in a decrease in EL for all films. No significant difference in WVP and opacity was observed between films made from mixtures of various proportions of whey protein concentrate,Gly with increasing olive oil (addition) at all levels of the plasticizer. PRACTICAL APPLICATIONS The main advantages of using edible films are extending food shelf life, improving food quality, adding value to the edible film-forming polymer and reducing synthetic packaging materials. Whey, obtained as a by-product in cheese, is produced in large quantities and has excellent functional properties and could potentially be used for edible films. [source] Studies on glass transition temperature of mono and bilayer protein films plasticized by glycerol and olive oilJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Babak Ghanbarzadeh Abstract Thermomechanical and thermal properties of whey protein, maize prolamin protein (zein), and the laminated whey protein,zein films were studied. The dynamic mechanical (thermal) analysis (DMTA) results showed that the single zein film had higher Tg than single whey protein and zein,whey laminated films. The shift in the Tg values of films from 31.2°C in whey protein film and 88.5°C in the zein film to 82.8°C in the laminated whey protein,zein films may be implied some interaction formation between the two polymers. The small tan , peaks were observed at ,50°C in zein,glycerol films and at ,22.37°C in the whey protein films and can be related to ,-relaxation phenomena or presence of glycerol rich region in polymer matrix. Zein-olive oil and zein,whey protein,olive oil films showed tan , peaks corresponded the Tg values at 113.8, and 92.4°C, respectively. Thus, replacing of glycerol with olive oil in film composition increased Tg. A good correspondence was obtained when DSC results were compared with the tan , peaks in DMTA measurements. DSC thermograms suggested that plasticizers and biopolymers remained a homogeneous material throughout the cooling and heating cycle. The results showed that Tg of zein,glycerol films predicted by Couchman and Karasz equation is very close to value obtained by DSC experiments. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] An analysis of water vapour diffusion in whey protein filmsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 5 2003Cristiana M. P. Yoshida Summary The macroscopic aspects of moisture transmission in whey protein films were determined by measuring water vapour adsorption. A theoretical model was constructed in which two kinds of water vapour fluxes were considered: one originating from diffusion, whilst the other was a flux due to the gravitation drift of moisture. The comparison of theoretical and experimental results showed that only the diffusion process was present. [source] Moisture adsorption by milk whey protein filmsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 3 2002C. M. P. Yoshida Edible films, using whey protein as the structural matrix, were tested for water vapour diffusion properties. Whey protein films were prepared by dispersing 6.5% whey protein concentrate (WPC) in distilled water with pH kept at 7.0. Glycerol was the plasticizer agent. Film slabs (13.5 × 3.5 cm) were put in a chamber at 25 °C and 75% relative humidity, being held in vertical planes for different periods of time. The mass gain was determined throughout the experiment. We show that moisture adsorption by milk whey protein films is well described by a linear diffusion equation model. After an adsorption experiment was performed the solution of the diffusion equation was fitted to the data to determine the diffusion coefficient of the material. [source] Studies on glass transition temperature of mono and bilayer protein films plasticized by glycerol and olive oilJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Babak Ghanbarzadeh Abstract Thermomechanical and thermal properties of whey protein, maize prolamin protein (zein), and the laminated whey protein,zein films were studied. The dynamic mechanical (thermal) analysis (DMTA) results showed that the single zein film had higher Tg than single whey protein and zein,whey laminated films. The shift in the Tg values of films from 31.2°C in whey protein film and 88.5°C in the zein film to 82.8°C in the laminated whey protein,zein films may be implied some interaction formation between the two polymers. The small tan , peaks were observed at ,50°C in zein,glycerol films and at ,22.37°C in the whey protein films and can be related to ,-relaxation phenomena or presence of glycerol rich region in polymer matrix. Zein-olive oil and zein,whey protein,olive oil films showed tan , peaks corresponded the Tg values at 113.8, and 92.4°C, respectively. Thus, replacing of glycerol with olive oil in film composition increased Tg. A good correspondence was obtained when DSC results were compared with the tan , peaks in DMTA measurements. DSC thermograms suggested that plasticizers and biopolymers remained a homogeneous material throughout the cooling and heating cycle. The results showed that Tg of zein,glycerol films predicted by Couchman and Karasz equation is very close to value obtained by DSC experiments. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] |