Western North America (western + north_america)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Assessing the effects of post-pine beetle forest litter on snow albedo

HYDROLOGICAL PROCESSES, Issue 6 2010
Rita Winkler
Abstract The effect of forest litter on snow surface albedo has been subject to limited study, mainly in the hardwood-dominated forests of the northeastern United States. Given the recent pine beetle infestation in Western North America and associated increases in litter production, this study examines the effects of forest litter on snow surface albedo in the coniferous forests of south-central British Columbia. Measured changes in canopy transmittance provide an indication of canopy loss or total litterfall over the winter of 2007,2008. Relationships between percent litter cover, an index of albedo, snow depth, and snow ablation during the 2008 melt season are compared between a mature, young, and clearcut coniferous stand. Results indicate a strong feedback effect between canopy loss and subsequent enhanced shortwave transmittance, and litter accumulation on the snow surface from that canopy loss. However, this relationship is confounded by other variables concurrently affecting albedo. While results suggest that a relatively small percent litter cover can have a significant effect on albedo and ablation, further research is underway to extract the litter signal from that of other factors affecting albedo, particularly snow depth. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Microsatellite DNA loci for Western Hemlock [Tsuga heterophylla (Raf.) Sarg]

MOLECULAR ECOLOGY RESOURCES, Issue 3 2002
Vindhya Amarasinghe
Abstract Polymorphic microsatellite loci were developed for Western Hemlock [Tsuga heterophylla (Raf.) Sarg], a prominent forest tree species in Western North America. Microsatellite-enriched libraries were screened for (CA)n dinucleotide repeats from which 33 positive clones were sequenced. Polymerase chain reaction (PCR) primers for 16 microsatellite loci were prepared and tested against DNA from unrelated Western Hemlock trees. The 12 most informative microsatellite loci are reported here. From four to 22 alleles per locus were observed, with an average expected heterozygousity of 0.799. [source]


Restoration Ecology and Invasive Riparian Plants: An Introduction to the Special Section on Tamarix spp. in Western North America

RESTORATION ECOLOGY, Issue 1 2008
Patrick B. Shafroth
Abstract River systems around the world are subject to various perturbations, including the colonization and spread of non-native species in riparian zones. Riparian resource managers are commonly engaged in efforts to control problematic non-native species and restore native habitats. In western North America, small Eurasian trees or shrubs in the genus Tamarix occupy hundreds of thousands of hectares of riparian lands, and are the targets of substantial and costly control efforts and associated restoration activities. Still, significant information gaps exist regarding approaches used in control and restoration efforts and their effects on riparian ecosystems. In this special section of papers, eight articles address various aspects of control and restoration associated with Tamarix spp. These include articles focused on planning restoration and revegetation; a synthetic analysis of past restoration efforts; and several specific research endeavors examining plant responses, water use, and various wildlife responses (including birds, butterflies, and lizards). These articles represent important additions to the Tamarix spp. literature and contain many lessons and insights that should be transferable to other analogous situations in river systems globally. [source]


Phenotypic evolution in high-elevation populations of western fence lizards (Sceloporus occidentalis) in the Sierra Nevada Mountains

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010
ADAM D. LEACHÉ
Adaptive divergence in response to variable habitats, climates, and altitude is often accentuated along elevation gradients. We investigate phenotypic evolution in body size and coloration in the western fence lizard (Sceloporus occidentalis Baird & Girard, 1852) across elevation gradients in Yosemite National Park, California, situated in the Sierra Nevada mountains of Western North America. High-elevation populations occurring above 2100 m a.s.l. are recognized as a separate subspecies (Sceloporus occidentalis taylori Camp, 1916), with a distinctive phenotype characterized by a large body size and extensive blue ventral pigmentation. We sampled S. occidentalis from across elevation gradients in Yosemite National Park, California, and collected phenotypic data (body size and ventral coloration measurements; 410 specimens) and mitochondrial DNA sequence data (complete NADH1 gene; 969 bp, 181 specimens) to infer phylogenetic relationships, and examine the genetic and phenotypic diversity among populations. Populations of S. occidentalis in Yosemite National Park follow Bergmann's rule and exhibit larger body sizes in colder, high-elevation environments. The high-elevation subspecies S. o. taylori is not monophyletic, and the mitochondrial DNA genealogy supports a model of convergent phenotypic evolution among high-elevation populations belonging to different river drainages. The hypothesis that separate populations of S. occidentalis expanded up river drainages after the recession of glaciers is supported by population demographic analyses, and suggest that Bergmann's clines can evolve rapidly along elevation gradients. The distinctive high-elevation phenotype that is attributable to S. o. taylori has evolved independently several times, and includes adaptive phenotypic changes associated with increases in body size and ventral coloration. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 630,641. [source]


Modeled Effects of Sagebrush-Steppe Restoration on Greater Sage-Grouse in the Interior Columbia Basin, U.S.A.

CONSERVATION BIOLOGY, Issue 5 2002
Michael J. Wisdom
Consequently, managers of FS,BLM lands need effective strategies to recover sagebrush (Artemisia spp.) habitats on which this species depends. In response to this need, we evaluated the potential benefits of two restoration scenarios on Greater Sage-Grouse in the interior Columbia Basin and adjacent portions of the Great Basin of the western United States. Scenario 1 assumed a 50% reduction in detrimental grazing effects (through changes in stocking rates and grazing systems) and a six-fold increase in areas treated with active restoration (e.g., prescribed burning, native seedings, wildfire suppression) compared with future management proposed by the FS,BLM. Scenario 2 assumed a 100% reduction in detrimental grazing effects and the same increase in active restoration as scenario 1. To evaluate benefits, we estimated the risk of population extirpation for sage grouse 100 years in the future under the two scenarios and compared this risk with that estimated for proposed (100-year) FS,BLM management. We used estimates of extirpation risk for historical (circa 1850,1890) and current time periods as a context for our comparison. Under historical conditions, risk of extirpation was very low on FS,BLM lands, but increased to a moderate probability under current conditions. Under proposed FS,BLM management, risk of extirpation on FS,BLM lands increased to a high probability 100 years in the future. Benefits of the two restoration scenarios, however, constrained the future risk of extirpation to a moderate probability. Our results suggest that expansive and sustained habitat restoration can maintain desired conditions and reduce future extirpation risk for sage grouse on FS,BLM lands in western North America. The continued spread of exotic plants, however, presents a formidable challenge to successful restoration and warrants substantial research and management attention. Resumen: Los hábitats del urogallo (Centrocercus urophasianus) han disminuido a lo largo de la región occidental de Norteamérica, y la mayoría de los hábitats restantes ocurren en terrenos administrados por el Servicio Forestal de E.U.A. (SF) y el Buró de Administración de Tierras ( BAT ). Por lo tanto, los encargados de las tierras SF,BAT necesitan estrategias eficaces para recuperar los hábitats de artemisa (Artemisia spp.) de los cuales depende esta especie. En respuesta a esta necesidad, evaluamos los beneficios potenciales de dos escenarios de restauración sobre el urogallo en el interior de la Cuenca del Columbia y porciones adyacentes de la Gran Cuenca del occidente de los Estados Unidos. El escenario 1 supone una reducción del 50% en los efectos perjudiciales del pastoreo ( por medio de cambios en las tasas de aprovisionamiento y en los sistemas de pastoreo) y un incremento de seis veces en la superficie de las áreas tratadas con restauración activa ( por ejemplo, quemas prescritas, plántulas nativas, supresión de fuego no controlado) comparada con la administración futura propuesta por el SF,BAT. El escenario 2 supone una reducción del 100% en los efectos de pastoreo perjudiciales y el mismo aumento en la restauración activa que en el escenario 1. Para evaluar los beneficios, estimamos el riesgo de extirpación de la población de urogallos en 100 años bajo los dos escenarios y comparamos este riesgo con el riesgo estimado por la propuesta de manejo de SF,BAT (100-años). Utilizamos estimaciones del riesgo de extirpación en períodos históricos (entre 1850 y 1890) y actuales como contexto para nuestra comparación. Bajo condiciones históricas, el riesgo de extirpación fue muy bajo en los terrenos SF,BAT pero aumentó a una probabilidad moderada bajo condiciones actuales. Bajo la administración propuesta por SF,BAT, el riesgo de extirpación en los terrenos SF,BAT aumentó a una alta probabilidad 100 años en el futuro. Sin embargo, los beneficios de los dos escenarios de restauración constriñen el riesgo de extirpación a una probabilidad moderada. Nuestros resultados sugieren que la restauración expansiva y sostenida del hábitat puede mantener condiciones deseadas y reduce el riesgo de extirpación de urogallos en terrenos SF,BAT en la región occidental de Norteamérica. Sin embargo, la continua extensión de plantas exóticas representa un reto formidable para la restauración exitosa y justifica considerable investigación y atención de manejo. [source]


Range-wide patterns of greater sage-grouse persistence

DIVERSITY AND DISTRIBUTIONS, Issue 6 2008
Cameron L. Aldridge
ABSTRACT Aim, Greater sage-grouse (Centrocercus urophasianus), a shrub-steppe obligate species of western North America, currently occupies only half its historical range. Here we examine how broad-scale, long-term trends in landscape condition have affected range contraction. Location, Sagebrush biome of the western USA. Methods, Logistic regression was used to assess persistence and extirpation of greater sage-grouse range based on landscape conditions measured by human population (density and population change), vegetation (percentage of sagebrush habitat), roads (density of and distance to roads), agriculture (cropland, farmland and cattle density), climate (number of severe and extreme droughts) and range periphery. Model predictions were used to identify areas where future extirpations can be expected, while also explaining possible causes of past extirpations. Results, Greater sage-grouse persistence and extirpation were significantly related to sagebrush habitat, cultivated cropland, human population density in 1950, prevalence of severe droughts and historical range periphery. Extirpation of sage-grouse was most likely in areas having at least four persons per square kilometre in 1950, 25% cultivated cropland in 2002 or the presence of three or more severe droughts per decade. In contrast, persistence of sage-grouse was expected when at least 30 km from historical range edge and in habitats containing at least 25% sagebrush cover within 30 km. Extirpation was most often explained (35%) by the combined effects of peripherality (within 30 km of range edge) and lack of sagebrush cover (less than 25% within 30 km). Based on patterns of prior extirpation and model predictions, we predict that 29% of remaining range may be at risk. Main Conclusions, Spatial patterns in greater sage-grouse range contraction can be explained by widely available landscape variables that describe patterns of remaining sagebrush habitat and loss due to cultivation, climatic trends, human population growth and peripherality of populations. However, future range loss may relate less to historical mechanisms and more to recent changes in land use and habitat condition, including energy developments and invasions by non-native species such as cheatgrass (Bromus tectorum) and West Nile virus. In conjunction with local measures of population performance, landscape-scale predictions of future range loss may be useful for prioritizing management and protection. Our results suggest that initial conservation efforts should focus on maintaining large expanses of sagebrush habitat, enhancing quality of existing habitats, and increasing habitat connectivity. [source]


The fundamental and realized niche of the Monterey Pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia

DIVERSITY AND DISTRIBUTIONS, Issue 4 2004
Trudi N. Wharton
ABSTRACT Essigella californica is a pine aphid native to western North America. In Australia, E. californica is considered an invasive pest that has the potential to cause severe economic loss to the Australian forestry industry. Two CLIMEX models were developed to predict the Australian and global distribution of E. californica under current climate conditions based upon the aphid's known North American distribution. The first model (model I) was fitted using the reasonably contiguous set of location records in North America that constituted the known range of E. californica, and excluded consideration of a single (reliable) location record of the aphid in southern Florida. The second model (model II) was fitted using all known records in North America. Model I indicated that the aphid would be climatically restricted to the temperate, Mediterranean and subtropical climatic regions of Australia. In northern Australia it would be limited by hot, wet conditions, while in more central areas of Australia it is limited by hot, dry conditions. Model II is more consistent with the current Australian distribution of E. californica. The contrast in geographical range and climatic conditions encompassed between the two models appears to represent the difference between the realized niche (model I) and fundamental niche (model II) of E. californica. The difference may represent the strength of biotic factors such as host limitation, competition and parasitism in limiting geographical spread in the native range. This paper provides a risk map for E. californica colonization in Australia and globally. E. californica is likely to remain a feature of the Australian pine plantations, and any feasibility studies into establishing coniferous plantations in lower rainfall areas should consider the likely impact of E. californica. [source]


Effects of physical disturbance and granivory on establishment of native and alien riparian trees in Colorado, U.S.A.

DIVERSITY AND DISTRIBUTIONS, Issue 1-2 2001
Gabrielle L. Katz
In western North America, the alien Elaeagnus angustifolia L. invades riparian habitats usually dominated by pioneer woody species such as Populus deltoides Marshall ssp. monilifera (Aiton) Eckenwalder. We conducted manipulative field experiments to compare the importance of physical disturbance and granivory for seedling establishment of these two species. We planted seeds of both species in disturbed and undisturbed study plots, and used exclosures, seed dish trials and live-trapping to assess the role of granivory. Seedling establishment of both species was increased by physical disturbance and seeds of both species were subject to granivory. However, the relative importance of these two factors differed between species. For P. deltoides, lack of physical disturbance prevented seedling establishment in uncleared subplots, but granivory did not prevent seedling establishment outside of exclosures. For E. angustifolia, granivory prevented seedling establishment outside of exclosures, but lack of physical disturbance did not prevent establishment in uncleared subplots. The lesser dependence on disturbance may enable E. angustifolia to invade areas characterized by low levels of fluvial disturbance, such as floodplains along regulated rivers, where P. deltoides recruitment does not occur. Populations of granivorous rodents may affect the susceptibility of riparian ecosystems to invasion by E. angustifolia. [source]


Development of partial rock veneers by root throw in a subalpine setting

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2006
W. R. Osterkamp
Abstract Rock veneers stabilize hillslope surfaces, occur especially in areas of immature soil, and form through a variety of process sets that includes root throw. Near Westcliffe, Colorado, USA, data were collected from a 20 × 500 m transect on the east slope of the Sangre de Cristo Mountains. Ages of pit/mound complexes with rock fragments exposed at the surface by root throw ranged from recent (freshly toppled tree) to unknown (complete tree decay). Calculations based on dimensions of the pit/mound complexes, estimated time of tree toppling, sizes of exposed rock fragments, and percentage rock covers at pit/mound complexes, as well as within the transect area, indicate that recent rates of root throw have resulted in only partial rock veneering since late Pleistocene deglaciation. Weathering of rock fragments prevents development of an extensive rock veneer and causes a balance, achieved within an estimated 700 years, between the rates of rock-fragment exposure by root throw and clast disintegration by chemical reduction. The estimated rate of rock-fragment reduction accounts for part of the fluvial sediment yields observed for forested subalpine areas of western North America. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Copper toxicity thresholds for important restoration grass species of the western United States,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2002
Mark W.
Abstract Copper toxicity thresholds for plant species that are used in restoration activities in western North America have not been established. As a result, ecological risk assessments must rely on toxicity thresholds established for agronomic species, which usually differ from those of species used in restoration. Thus, risk assessors have the potential for classifying sites as phytotoxic to perennial, nonagronomic species and calling for intensive remediation activities that may not be necessary. The objective of this study was to provide a better estimate of Cu toxicity thresholds for five grass species that are commonly used in restoration efforts in the western United States. We used a greenhouse screening study where seedlings of introduced redtop (Agrostis gigantea Roth.), the native species slender wheatgrass (Elymus trachycaulus [Link] Gould ex Shinners var. Pryor), tufted hairgrass (Deschampsia caespitosa [L.] Beauvois), big bluegrass (Poa secunda J. Presl var. Sherman), and basin wildrye (Leymus cinereus [Scribner&Merrill] A. Löve var. Magnar) and the agricultural species common wheat (Triticum aestivum L.) were grown in sand culture and exposed to supplemental concentrations of soluble Cu of 0 (control), 50, 100, 150, 200, 250, and 300 mg/L. We determined six measures of toxicity: the 60-d mean lethal concentration (LC50), 60-d mean effective concentration (EC50)-plant, 60-d EC50-shoot, 60-d EC50-root, phytotoxicity threshold (PT50)-shoot, and the PT50-root. Results suggest that these restoration grass species generally have higher Cu tolerance than agronomic species reported in the past. Of the species tested, redtop appeared to be especially tolerant of high levels of substrate and tissue Cu. Values of EC50-plant for restoration grasses were between 283 and 710 mg Cu/L compared to 120 mg Cu/L for common wheat. Measured PT50-shoot values were between 737 and 10,792 mg Cu/ L. These reported thresholds should be more useful for risk assessors than those currently used, which are based largely on agronomic crops. [source]


DYNAMICS OF POLYPLOID FORMATION IN TRAGOPOGON (ASTERACEAE): RECURRENT FORMATION, GENE FLOW, AND POPULATION STRUCTURE

EVOLUTION, Issue 7 2010
V. Vaughan Symonds
Polyploidy is a major feature of angiosperm evolution and diversification. Most polyploid species have formed multiple times, yet we know little about the genetic consequences of recurrent formations. Among the clearest examples of recurrent polyploidy are Tragopogon mirus and T. miscellus (Asteraceae), each of which has formed repeatedly in the last ,80 years from known diploid progenitors in western North America. Here, we apply progenitor-specific microsatellite markers to examine the genetic contributions to each tetraploid species and to assess gene flow among populations of independent formation. These data provide fine-scale resolution of independent origins for both polyploid species. Importantly, multiple origins have resulted in considerable genetic variation within both polyploid species; however, the patterns of variation detected in the polyploids contrast with those observed in extant populations of the diploid progenitors. The genotypes detected in the two polyploid species appear to represent a snapshot of historical population structure in the diploid progenitors, rather than modern diploid genotypes. Our data also indicate a lack of gene flow among polyploid plants of independent origin, even when they co-occur, suggesting potential reproductive barriers among separate lineages in both polyploid species. [source]


From renewable energy to fire risk reduction: a synthesis of biomass harvesting and utilization case studies in US forests

GCB BIOENERGY, Issue 3 2009
A. M. EVANS
Abstract The volatile costs of fossil fuels, concerns about the associated greenhouse gas emissions from these fuels, and the threat of catastrophic wildfires in western North America have resulted in increased interest and activity in the removal and use of woody biomass from forests. However, significant economic and logistical challenges lie between the forests and the consumers of woody biomass. In this study, we provide a current snapshot of how biomass is being removed from forests and used across the United States to demonstrate the wide variety of successful strategies, funding sources, harvesting operations, utilization outlets, and silvicultural prescriptions. Through an analysis of 45 case studies, we identified three themes that consistently frame each biomass removal and utilization operation: management objectives, ecology, and economics. The variety and combination of project objectives exemplified by the case studies means biomass removals are complex and difficult to categorize for analysis. However, the combination of objectives allows projects to take advantage of unique opportunities such as multiple funding sources and multiparty collaboration. The case studies also provide insight into the importance of ecological considerations in biomass removal both because of the opportunity for forest restoration and the risk of site degradation. The national view of the economic aspects of biomass removal provided by this wide variety of case studies includes price and cost ranges. This study is an important first step that helps define woody biomass removals which are becoming an essential part of forestry in the 21st century. [source]


A constrained 2D gravity model of the Sebastián Vizcaíno Basin, Baja California Sur, Mexico

GEOPHYSICAL PROSPECTING, Issue 6 2005
J. García-Abdeslem
ABSTRACT The subsurface geometry of the Sebastián Vizcaíno Basin is obtained from the 2D inversion of gravity data, constrained by a density-versus-depth relationship derived from an oil exploration deep hole. The basin accumulated a thick pile of marine sediments that evolved in the fore-arc region of the compressive margin prevalent along western North America during Mesozoic and Tertiary times. Our interpretation indicates that the sedimentary infill in the Sebastián Vizcaíno Basin reaches a maximum thickness of about 4 km at the centre of a relatively symmetric basin. At the location of the Suaro-1 hole, the depth to the basement derived from this work agrees with the drilled interface between calcareous and volcaniclastic members of the Alisitos Formation. A sensitivity analysis strongly suggests that the assumed density function leads to a nearly unique solution of the inverse problem. [source]


The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability

INSECT MOLECULAR BIOLOGY, Issue 2 2007
J. D. Fenn
Abstract The Anabrus simplex is a swarming plague orthopteran found in western North America. The genome is 15 766 bp in length and genome organization follows the ancestral insect gene arrangement. atp6 lacked any readily identifiable stop codon. Examination of mRNA secondary structure for this gene suggested a stem/loop-mediated mRNA post-transcriptional processing to liberate a mature atp6 mRNA with a complete stop codon produced by polyadenylation. Comparison of similar protein with protein gene boundaries in other insect species reveal a general mechanism for mRNA excision and provide further supporting evidence for post-transcriptional mRNA processing in mitochondrial genomes. The A + T-rich region, or control region, was sequenced for 55 A. simplex individuals from 12 different populations. Variance studies between these individuals show that the A + T-rich region contains significant phylogenetic signal to be used in population studies. [source]


Remote weather associated with North Pacific subtropical sea level high properties

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2007
Richard Grotjahn
Abstract Remote events influencing North Pacific (NP) subtropical high properties in monthly and daily data are identified. Variability in the NP during summer is far more strongly dominated by midlatitude events than in South Pacific (SP); low-pass filtering is required to see tropical associations. The dominant pattern in composites, correlations, and regressions is a midlatitude wave train. A stronger NP high was led by higher sea-level pressure (SLP) just east of Japan and lower SLP over central Canada and to a lesser extent over western tropical Pacific. Various mechanisms have been proposed to force the NP high: (1)Heating over southwestern North America (with cooling off the west coast). However, higher temperatures over North America follow stronger SLP over the NP high and occur much further east than postulated. Higher SLP occurs where temperatures are lower over western North America and adjacent ocean. Thermal pattern is consistent with temperature advection between NP high and Canadian low. (2)Precipitation over and near Central America. However, SLP increase on the SE side of the high is led by higher SLP (and higher outgoing longwave radiation (OLR)) along the west coast of Mexico and Central America. Normalized regressions find a very weak lower OLR in North American monsoon preceding stronger NP high, but the region is much smaller in size and magnitude than other significant areas. (3)Precipitation over Indonesia and southeast Asia. Statistics provide some support for lower SLP and OLR over Indonesia preceding higher SLP in the center, west, and northwest sides of NP high. The lower SLP and OLR appear to migrate into southeast Asia, perhaps independently, perhaps from stronger NP high. (4)The NP high has a strong connection to El Niño during winter, but no significant link during summer. Only the south side of NP high appears (weakly) linked to the Madden Julian oscillation (MJO). Copyright © 2006 Royal Meteorological Society [source]


The behavior of extreme cold air outbreaks under greenhouse warming

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2006
S. Vavrus
Abstract Climate model output is used to analyze the behavior of extreme cold-air outbreaks (CAOs) under recent and future climatic conditions. The study uses daily output from seven GCMs run under late-twentieth century and projected twenty-first century radiative conditions (SRES A1B greenhouse gas emission scenario). We define a CAO as an occurrence of two or more consecutive days during which the local mean daily surface air temperature is at least two standard deviations below the local wintertime mean temperature. In agreement with observations, the models generally simulate modern CAOs most frequently over western North America and Europe and least commonly over the Arctic. These favored regions for CAOs are located downstream from preferred locations of atmospheric blocking. Future projections indicate that CAOs,defined with respect to late-twentieth century climatic conditions,will decline in frequency by 50 to 100% in most of the Northern Hemisphere during the twenty-first century. Certain regions, however, show relatively small changes and others actually experience more CAOs in the future, due to atmospheric circulation changes and internal variability that counter the thermodynamic tendency from greenhouse forcing. These areas generally experience greater near-surface wind flow from the north or the continent during the twenty-first century and/or are especially prone to atmospheric blocking events. Simulated reductions in CAOs are smallest in western North America, the North Atlantic, and in southern regions of Europe and Asia. The Eurasian pattern is driven by a strong tendency for the models to produce sea-level pressure (SLP) increases in the vicinity of the Mediterranean Sea (intermodel mean of 3 hPa), causing greater advection of continental air from northern and central Asia, while the muted change over western North America is due to enhanced ridging along the west coast and the increased frequency of blocking events. The North Atlantic response is consistent with a slowdown of the thermohaline circulation, which either damps the warming regionally or results in a cooler mean climate in the vicinity of Greenland. Copyright © 2006 Royal Meteorological Society. [source]


Linking global circulation model synoptics and precipitation for western North America

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2002
Suzan Lapp
Abstract Synoptic downscaling from global circulation models (GCMs) has been widely used to develop local and regional-scale future precipitation scenarios under global warming. This paper presents an analysis of the linkages between the Canadian Centre for Climate Modelling and Analysis first version of the Canadian Global Coupled Model (CCCma CGCM1) 2000 model output and local/regional precipitation time series. The GCM 500 hPa geopotential heights were visually classified for synoptic patterns using a geographical information system. The pattern frequencies were statistically compared with historical data from Changnon et al. (1993. Monthly Weather Review121: 633,647) for the winter period 1961,85. The CGCM1 synoptic frequencies compare favourably with the historical data, and they represent a substantial improvement over the 1992 Canadian Climate Centre Global Circulation Model synoptic climatology output. The CGCM1 output was used to forecast future winter precipitation scenarios for five geographically diverse climate stations in western North America. Copyright © 2002 Royal Meteorological Society. [source]


Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 6 2001
David M. Meko
Abstract The variability of the North American Monsoon System (NAMS) is important to the precipitation climatology of Mexico and the southwestern United States. Tree-ring studies have been widely applied to climatic reconstruction in western North America, but as yet, have not addressed the NAMS. One reason is the need for highly resolved seasonal dendroclimatic information. Latewood-width, the portion of the annual tree ring laid down late in the growing season, can potentially yield such information. This paper describes a pilot study of the regional summer precipitation signal in latewood-width from a network of five Pseudotsuga menziesii chronologies developed in the heart of the region of NAMS influence in Arizona, USA. Exploratory data analysis reveals that the summer precipitation signal in latewood is strong, but not equally so over the full range of summer precipitation. Scatter in the relationship increases toward higher levels of precipitation. Adjustment for removal of inter-correlation with earlywood-width appears to strengthen the summer precipitation signal in latewood-width. To demonstrate a possible application to climatic reconstruction, the latewood precipitation signal is modelled using a nonlinear model,a binary recursive classification tree (CT) that attempts to classify summers as dry or not dry from threshold values of latewood-width. The model identifies narrow latewood-width as an effective predictor of a dry summer. Of 14 summers classified dry by latewood-width for the period 1868,1992, 13 are actually dry by the instrumental precipitation record. The results suggest that geographical expansion of coverage by latewood-width chronologies and further development of statistical methods may lead to successful reconstruction of variability of the NAMS on century time scales. Copyright © 2001 Royal Meteorological Society [source]


Biology and host specificity of Aulacobaris fallax (Coleoptera: Curculionidae), a potential biological control agent for dyer's woad, Isatis tinctoria (Brassicaceae) in North America

JOURNAL OF APPLIED ENTOMOLOGY, Issue 5 2009
E. Gerber
Abstract Dyer's woad, Isatis tinctoria, a plant of Eurasian origin is a problematic weed in western North America against which a classical biological weed control programme was initiated in 2004. Three European insect species were selected as candidate agents to control this invasive species, including the root-mining weevil Aulacobaris fallax. To determine its suitability as an agent, the biology and host specificity of A. fallax were studied in outdoor plots and in the field between 2004 and 2006 in its native European range. Aulacobaris fallax is a univoltine species that lays its eggs from March to August into leaf stalks and roots of dyer's woad. Larvae mine and pupate in the roots and adults emerge from August to October. Up to 62% of the dyer's woad plants at the field sites investigated were attacked by this weevil. In no-choice host-specificity tests, A. fallax attacked 16 out of 39 species and varieties within the Family Brassicaceae. Twelve of these are native to North America. In subsequent multiple-choice tests, seven species, all native to North America, suffered a similar level of attack as dyer's woad, while none of the European species were attacked. Our results demonstrate the importance of including test plant species that have not co-evolved with the respective candidate agent. In sum, we conclude that the risk of non-target effects is too high for A. fallax to be considered as a biological control agent for dyer's woad in the United States. [source]


Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling

JOURNAL OF BIOGEOGRAPHY, Issue 9 2009
J. D. Lozier
Abstract The availability of user-friendly software and publicly available biodiversity databases has led to a rapid increase in the use of ecological niche modelling to predict species distributions. A potential source of error in publicly available data that may affect the accuracy of ecological niche models (ENMs), and one that is difficult to correct for, is incorrect (or incomplete) taxonomy. Here we remind researchers of the need for careful evaluation of database records prior to use in modelling, especially when the presence of cryptic species is suspected or many records are based on indirect evidence. To draw attention to this potential problem, we construct ENMs for the North American Sasquatch (i.e. Bigfoot). Specifically, we use a large database of georeferenced putative sightings and footprints for Sasquatch in western North America, demonstrating how convincing environmentally predicted distributions of a taxon's potential range can be generated from questionable site-occurrence data. We compare the distribution of Bigfoot with an ENM for the black bear, Ursus americanus, and suggest that many sightings of this cryptozoid may be cases of mistaken identity. [source]


Biogeography of Plagiochila (Hepaticae): natural species groups span several floristic kingdoms

JOURNAL OF BIOGEOGRAPHY, Issue 7 2003
Henk Groth
Abstract Aim This paper presents a synthesis of our recent results regarding the biogeography of Plagiochila using a molecular approach, and documents intercontinental ranges within this largest genus of the hepatics. Methods A maximum likelihood analysis of sixty-one nrITS sequences of Plagiochila was performed and the molecular topology obtained was compared with morphological, phytochemical and geographical data. Results Our molecular data set allowed the identification of eleven Plagiochila sections, the majority of which cover at least two floristic kingdoms. Seven sections have species in Europe (sect. Arrectae, Carringtoniae, Fuscoluteae, Glaucescentes, Plagiochila, Rutilantes, Vagae). Plagiochila species from Atlantic Europe are usually close to or conspecific with neotropical taxa, whereas species widespread in Europe are closely related to Asian ones and not to those in the Neotropics. Plagiochila sect. Arrectae represents a neotropical , Atlantic European clade. The section is not closely related , as has often been suggested , to the morphologically similar sect. Zonatae from Asia and western North America. Sequence data show that the African P. integerrima and the neotropical P. subplana are members of the Asian sect. Cucullatae (sect. Ciliatae, syn. nov.), which becomes pantropical in distribution. An ITS sequence of P. boryana from Uganda confirms the Afro-American range of the primarily neotropical sect. Hylacoetes. Similarities in sporophyte morphology between the sect. Cucullatae and sect. Hylacoetes are the result of parallel evolution. Main conclusions Our results indicate that intercontinental ranges at section and species level are common in Plagiochila. Carl's (1931) subdivision of Plagiochila into sections restricted to one floristic kingdom is outdated. Biogeographical patterns in Plagiochila are not dissimilar to those of other groups of bryophytes but elucidation of the geographical ranges of the taxa requires a molecular approach. Contrary to earlier belief, most Plagiochila species from Atlantic Europe do not have close relatives in Asia but are conspecific with or closely related to species from tropical America. [source]


Testing the Long-Term Effects of the Go Sun Smart Worksite Health Communication Campaign: A Group-Randomized Experimental Study

JOURNAL OF COMMUNICATION, Issue 3 2008
Peter A. Andersen
This study examined the long-term effects of the Go Sun Smart (GSS) campaign, a large-scale health communication intervention designed to promote sun safety to employees at 26 ski areas in western North America. Employees were enrolled in a pair-matched group-randomized pretest,posttest controlled design with 2 follow-up surveys. Half of the ski areas were randomly assigned to implement GSS in the winter. This article reports analyses of a hierarchical linear design with responses from 1,463 employees who completed the second follow-up survey at the end of the following summer (69% of those who completed the first posttest). GSS continued to have positive effects on employees who worked at intervention ski areas into the summer. Employees exposed to GSS reported less sunburning, engaged in more sun safety behaviors, were more aware of the program, and had more discussions of sun safety at home than employees at matched control group resorts. The long-term effects of GSS support recommending that sun protection programs be implemented at workplaces, but such programs should be implemented with high fidelity to achieve maximum benefits. Despite limitations due to nonresponse, geography, measurement, and ethnicity, the hierarchical clustered design improved the internal validity and generalizability of the findings. [source]


The paternal-sex-ratio (PSR) chromosome in natural populations of Nasonia (Hymenoptera: Chalcidoidea)

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2000
L. W. Beukeboom
Selfish genetic elements may be important in promoting evolutionary change. Paternal sex ratio (PSR) is a selfish B chromosome that causes all-male families in the haplodiploid parasitic wasp Nasonia vitripennis, by inducing paternal genome loss in fertilized eggs. The natural distribution and frequency of this chromosome in North American populations of N. vitripennis was investigated using a combination of phenotypic and molecular assays. Sampling throughout North America failed to recover PSR except from populations in the Great Basin area of western North America. Extensive sampling of Great Basin populations revealed PSR in frequencies ranging from 0 to 6% at different collection sites, and extended its distribution to Idaho and Wyoming. Intensive sampling in upstate New York did not detect the chromosome. Frequencies of the maternal-sex ratio distorter (MSR), son killer (SK) and virgin females ranged from 0 to 12%. Paternal sex ratio may be restricted to the Great Basin because its spread is hampered by geographical barriers, or because populations in other areas are not conducive to PSR maintenance. However, it cannot be ruled out that PSR occurs in other regions at very low frequencies. The apparent limited distribution and low frequency of PSR suggest that it will have relatively little impact on genome evolution in Nasonia. [source]


TREE RING RECONSTRUCTIONS OF STREAMFLOW FOR THREE CANADIAN PRAIRIE RIVERS,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2003
Roslyn A. Case
ABSTRACT: Information regarding long term hydrological variability is critical for the effective management of surface water resources. In the Canadian Prairie region, growing dependence on major river systems for irrigation and other consumptive uses has resulted in an increasing vulnerability to hydrological drought and growing interprovincial tension. This study presents the first dendrochronological records of streamflow for Canadian Prairie rivers. We present 1,113-year, 522-year, and 325-year reconstructions of total water year (October to September) streamflow for the North Saskatchewan, South Saskatchewan, and Saskatchewan Rivers, respectively. The reconstructions indicate relatively high flows during the 20th Century and provide evidence of past prolonged droughts. Low flows during the 1840s correspond with aridity that extended over much of the western United States. Similarly, an exceptional period of prolonged low flow conditions, approximately 900 A.D. to 1300 A.D., is coincident with evidence of sustained drought across central and western North America. The 16th Century megadrought of the western United States and Mexico, however, does not appear to have had a major impact on the Canadian rivers. The dendrohydrological records illustrate the risks involved if future water policy and infrastructure development in the Canadian Prairies are based solely on records of streamflow variability over the historical record. [source]


Stalked crinoids from a Jurassic tidal deposit in western North America

LETHAIA, Issue 1 2000
CAROL M. TANG
This is the first systematic and paleoecological study of a crinoidal limestone (encrinite) from the Jurassic System of North America. The encrinite is part of a shallow-water tidal facies of the Middle Jurassic Carmel Formation located at Mount Carmel Junction (southwestern Utah, U.S.A.) and may represent one of the youngest shallow-water encrinites in the geological record. In the past, the crinoid at this locality was referred to as Pentacrinus asteriscus, a name used to describe almost all of the crinoid columnals found throughout the Jurassic of the U.S. western interior. However, systematic work indicates that the crinoid is Isocrinus nicoleti and is the first non-endemic crinoid to be reported from North American Jurassic strata. Although articulated pinnules and arms have been found, I. nicoleti occurs predominantly as well-preserved, partially articulated columnals. The crinoids occur within a tidal complex consisting of ooid shoal, tidal channel, and lagoonal facies. The unique environmental and ecological conditions which existed in the southernmost end of the Jurassic North America seaway may have allowed for the development of this crinoid colony and subsequent deposition of the encrinite. [source]


The influence of an upper-level frontal zone on the Mack Lake Wildfire environment

METEOROLOGICAL APPLICATIONS, Issue 2 2007
Tarisa Zimet
Abstract Meteorological assessment of wildland fire danger has traditionally involved the identification of several synoptic weather types empirically determined to influence wildfire spread. Specifically, in the Great Lakes Region, high wildfire danger is often witnessed in association with northwesterly synoptic-scale flow aloft. Such synoptic-scale flow is regularly associated with the development of upper-level frontal zones also known as upper-level jet/front systems, which are often characterised by intrusions of stratospheric air into the troposphere. The notion that upper-frontal development can play an important role in promoting wildfire spread is advanced through interrogation of the output from a fine-scale numerical simulation of a documented explosive wildfire case; the Mack Lake Fire of May 1980. The Mack Lake case was characterised by a developing upper-level front embedded within a shortwave trough in the vicinity of the fire location. The upper-level front originated in northwesterly flow in central Canada as an upper-tropospheric ridge amplified over western North America. A thermally indirect circulation at the jet exit region both contributed to the intensification of the front and was associated with a maximum in quasi-geostrophic descent at mid-levels upstream of the fire region. The subsidence ushered dry air from the middle and upper-troposphere downward along sloping isentropes adiabatically warming and drying it along the way. A well-developed dry air intrusion associated with the operation of these processes extended to nearly the 750 hPa level far downstream from the actual upper-frontal zone supplying the fire environment with dry air that originated in the upper-troposphere/lower stratosphere. The organised subsidence was also responsible for downward advection of high momentum air from within the frontal zone into the fire environment, further influencing the wildfire spread. We conclude that upper-frontal processes, characteristic of northwesterly synoptic-scale flow, are likely a contributing factor to the prevalence of wildfire spread under such synoptic-scale conditions. Copyright © 2007 Royal Meteorological Society [source]


Extreme population subdivision throughout a continuous range: phylogeography of Batrachoseps attenuatus (Caudata: Plethodontidae) in western North America

MOLECULAR ECOLOGY, Issue 20 2007
IÑIGO MARTÍNEZ, SOLANO
Abstract Low-vagility species with deep evolutionary histories are key to our understanding of the biogeographical history of geologically complex areas, such as the west coast of North America. We present a detailed study of the phylogeography of the salamander Batrachoseps attenuatus (Caudata: Plethodontidae) using sequences of the mitochondrial gene cob from 178 individuals sampled from throughout the species' range. Sequences of three other mitochondrial genes (16S, cox1, nad4) and a nuclear gene (RAG-1) were used to investigate the deeper evolutionary history of the species. We found high levels of genetic diversity and deep divergences within a mostly continuous distribution, with five genetically well-differentiated and geographically structured mitochondrial DNA clades. Significant association between geographical and genetic distances within these clades suggests demographic stability, whereas Fu's FS tests suggest demographic expansions in three of them. Mantel tests identify two biogeographical barriers, the San Andreas Fault and the Sacramento,San Joaquin Delta, as important in the diversification of lineages. The timing of the main splitting events between intraspecific lineages was estimated by applying relaxed molecular clock methods combining several mutation rates and a fossil calibration. The earliest splitting events are old (Pliocene/Miocene), with more recent (Pleistocene) subdivisions in some clades. Disjunct populations distributed along the western foothills of the Sierra Nevada colonized this area relatively recently from a single refugium east of San Francisco Bay. The combination of fine-scale, comprehensive sampling with phylogenetic, historical demographic and hypothesis-based tests allowed delineation of a complex biogeographical scenario with general implications for the study of codistributed taxa. [source]


Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic

MOLECULAR ECOLOGY, Issue 1 2006
DANA M. HAWLEY
Abstract The impact of founder events on levels of genetic variation in natural populations remains a topic of significant interest. Well-documented introductions provide a valuable opportunity to examine how founder events influence genetic diversity in invasive species. House finches (Carpodacus mexicanus) are passerine birds native to western North America, with the large eastern North American population derived from a small number of captive individuals released in the 1940s. Previous comparisons using amplified fragment length polymorphism (AFLP) markers found equivalent levels of diversity in eastern and western populations, suggesting that any genetic effects of the founder event were ameliorated by the rapid growth of the newly established population. We used an alternative marker system, 10 highly polymorphic microsatellites, to compare levels of genetic diversity between four native and five introduced house finch populations. In contrast to the AFLP comparisons, we found significantly lower allelic richness and heterozygosity in introduced populations across all loci. Three out of five introduced populations showed significant reductions in the ratio of the number of alleles to the allele size range, a within-population characteristic of recent bottlenecks. Finally, native and introduced populations showed significant pairwise differences in allele frequencies in every case, with stronger isolation by distance within the introduced than native range. Overall, our results provide compelling molecular evidence for a founder effect during the introduction of eastern house finches that reduced diversity levels at polymorphic microsatellite loci and may have contributed to the emergence of the Mycoplasma epidemic which recently swept the eastern range of this species. [source]


Cryptic Neogene vicariance and Quaternary dispersal of the red-spotted toad (Bufo punctatus): insights on the evolution of North American warm desert biotas

MOLECULAR ECOLOGY, Issue 10 2005
JEF R. JAEGER
Abstract We define the geographical distributions of mitochondrial DNA (mtDNA) lineages embedded within a broadly distributed, arid-dwelling toad, Bufo punctatus. These patterns were evaluated as they relate to hypothesized vicariant events leading to the formation of desert biotas within western North America. We assessed mtDNA sequence variation among 191 samples from 82 sites located throughout much of the species' range. Parsimony-based haplotype networks of major identified lineages were used in nested clade analysis (NCA) to further elucidate and evaluate shallow phylogeographic patterns potentially associated with Quaternary (Pleistocene,Holocene) vicariance and dispersal. Phylogenetic analyses provided strong support for three monophyletic lineages (clades) within B. punctatus. The geographical distributions of the clades showed little overlap and corresponded to the general boundaries of the Peninsular Desert, and two continental desert regions, Eastern (Chihuahuan Desert,Colorado Plateau) and Western (Mojave,Sonoran deserts), geographically separated along the Rocky Mountains and Sierra Madre Occidental. The observed divergence levels and congruence with postulated events in earth history implicate a late Neogene (latest Miocene,early Pliocene) time frame for separation of the major mtDNA lineages. Evaluation of nucleotide and haplotype diversity and interpretations from NCA reveal that populations on the Colorado Plateau resulted from a recent, likely post-Pleistocene, range expansion from the Chihuahuan Desert. Dispersal across historical barriers separating major continental clades appear to be recent, resulting in secondary contacts in at least two areas. Given the observed contact between major clades, we speculated as to why the observed deep phylogeographic structure has not been eroded during the multiple previous interglacials of the Pleistocene. [source]


Geological barriers and restricted gene flow in the holarctic skipper Hesperia comma (Hesperiidae)

MOLECULAR ECOLOGY, Issue 11 2004
M. L. FORISTER
Abstract Patterns of genetic variation within a species may be a consequence of historical factors, such as past fragmentation, as well as current barriers to gene flow. Using sequence data from the mitochondrial cytochrome oxidase subunit II region (COII) and the nuclear gene wingless, we conducted a phylogeographical study of the holarctic skipper Hesperia comma to elucidate patterns of genetic diversity and to infer historical and contemporary processes maintaining genetic variation. One hundred and fifty-one individuals were sampled from throughout North America and Eurasia, focusing on California and adjacent regions in the western United States where morphological diversity is highest compared to the rest of the range. Analyses of sequence data obtained from both genes revealed a well-supported division between the Old and New World. Within western North America, wingless shows little geographical structure, while a hierarchical analysis of genetic diversity of COII sequences indicates three major clades: a western clade in Oregon and Northern California, an eastern clade including the Great Basin, Rocky Mountains and British Columbia, and a third clade in southern California. The Sierra Nevada and the Transverse Ranges appear to be the major barriers to gene flow for H. comma in the western United States. Relatively reduced haplotype diversity in Eurasia compared to North America suggests that populations on the two continents have been affected by different historical processes. [source]