Western Amazonia (western + amazonia)

Distribution by Scientific Domains


Selected Abstracts


The Drug Trade, the Black Economy, and Society in Western Amazonia

INTERNATIONAL SOCIAL SCIENCE JOURNAL, Issue 169 2001
Roberto Araújo
This article describes some of the main social and political consequences of the emergence of the cocaine trade in Brazilian Amazonia, taking as an example the state of Acre. Drug trafficking, which concerns all sections of society, has, like other illegal networks, become an alternative to the rubber industry, which has been in crisis since the 1980s. Its implications differ, however, in the northern and southern parts of the state. In the latter, especially in the capital, Acre, the development of a local market of urban consumers is closely connected to police corruption and the illegal use of violence by law enforcement agencies. In the former, where machinery for the social redistribution of illegal income seems to be more effective, the cocaine trade is contributing to a degree of prosperity, thanks in particular to recent growth in the service sector. While violence is, comparatively speaking, less necessary as a guarantee of social control in that region, the control exercised by drug barons and business people over the executive branches of the state means that political life as a whole is criss-crossed by relationships forged in the criminal world. [source]


The riverscape of Western Amazonia , a quantitative approach to the fluvial biogeography of the region

JOURNAL OF BIOGEOGRAPHY, Issue 8 2007
Tuuli Toivonen
Abstract Aim, To provide a quantitative spatial analysis of the riverscape (open-water bodies and their surrounding areas) of the Western Amazonian lowlands using a consistent surface of remotely sensed imagery. Taking into account the essential significance of fluvial environments for the Amazonian biota, we propose that an enhanced understanding of the Amazonian riverscape will provide new insight for biogeographical studies in the region and contribute to the understanding of these megadiverse tropical lowlands. Location, An area of 2.2 million km2 covering the Western Amazonian lowlands of the Andean foreland region, i.e. the upper reaches of the Amazon river system. Areas in Colombia, Venezuela, Ecuador, Peru, Brazil and Bolivia between longitudes 83 °W and 65 °W and latitudes 5 °N and 12 °S are included. Methods, A mosaic of 120 Landsat TM satellite images was created with 100-m resolution, and water areas of over 1 ha in size or c. 60 m in width were extracted using a simple ratio threshold applicable to a large set of data. With this method, 99.1% of the water areas present in 30-m imagery were mapped with images with 100-m resolution. Water pixels of distinct river segments were assigned to river classes on the basis of their channel properties, and islands and lakes were distinguished separately and classified. Measures of water patterns such as structure, composition, richness and remoteness were provided for various spatial units. Riverine corridors were computed from the open-water mask by outer limits of active channels and floodplain lakes. Analytical results are shown as both thematic maps and statistics. Results, A total of 1.1% of Western Amazonia is covered by open-water bodies over 1 ha in size or 60 m in width. River-bound waters comprise 98% of the total water surface. Whilst isolated lakes are scarce, river-bound oxbow and backchannel lakes are plentiful, comprising 17.5% of all waters. They are particularly frequent along meandering channels, which dominate both in area and length. The riverine corridors including active channels and floodplain lakes cover 17% of the land area. The average distance from any point of land to the nearest water is 12 km. Geographically speaking, the distribution of waters is uneven across the region, and the detailed characteristics of the riverscape are geographically highly variable. Three major, fluvially distinct regions can be identified: central Western Amazonia, the south, and the north-east. The proportional surface areas of the riverine corridors, numbers of lakes, sizes of islands and their distributions depend largely on the types and sizes of the rivers. Main conclusions, Our results support the notion of Western Amazonia as a dynamic, highly fluvial environment, highlighting and quantifying considerable internal variation within the region in terms of fluvial patterns and the processes that they reflect and control. Biogeographically, the variety of types of fluvial environments and their characteristics are important constituents of what influences the distribution of species and dynamics of terrestrial habitats. Spatially consistent riverscape data can serve as a consistent and scalable source of relevant information for other biogeographical approaches in the region. [source]


Edaphic niche differentiation among Polybotrya ferns in western Amazonia: implications for coexistence and speciation

ECOGRAPHY, Issue 3 2006
Hanna TuomistoArticle first published online: 22 FEB 200
To study the degree of edaphic specialization in Amazonian plants, the distribution patterns of seven species of Polybotrya ferns were studied in 109 sites in a climatically uniform area of northwestern Amazonia (Colombia, Ecuador and northern Peru). The two most abundant species of Polybotrya were found in about two-thirds of the sites with almost 7000 individuals each, the rarest species occurred in just one site with 40 individuals. Each of the seven species appeared to have a unique realised niche, when niche dimensions were defined by gradients in soil texture, soil cation content, and inundation. The species also differed in how broadly or narrowly they were distributed along each gradient. Some species were practically never found in the same sites, whereas others co-occurred with a high frequency, in spite of showing clearly different abundance patterns among sites. A single site only contains a small part of the edaphic variation present in the landscape, and a small proportion of any species' niche space, so broad-scale studies are needed to adequately describe and compare species' niches and to assess to what degree niche differences promote species coexistence. The distribution patterns in Polybotrya are consistent with, but do not prove, that ecological speciation may have been important in the radiation of the genus. If such a pattern is found to be common in other Amazonian plants, this would indicate that each evolutionary lineage has adapted to the available habitats largely independently of the others. [source]


PERI-URBAN AGROFORESTRY IN THE BRAZILIAN AMAZON,

GEOGRAPHICAL REVIEW, Issue 2 2000
VANESSA A. V. SLINGER
ABSTRACT. Together, urbanization and the search for sustainable development present a dilemma in the Brazilian Amazon: how to accommodate an expanding urban population while creating and maintaining sustainable production systems that feed the people and manage the forest. A unique peri-urban agroforestry project, implemented by a municipal government in western Amazonia and concerned with a citywide influx of rural agriculturalists and former forest-dwelling extractive producers, is examined as a source of food and self-determination. Peri-urban agroforestry seems to be a viable option for other Amazonian cities that are experiencing increasing urbanization and its associated problems. [source]


The regional variation of aboveground live biomass in old-growth Amazonian forests

GLOBAL CHANGE BIOLOGY, Issue 7 2006
YADVINDER MALHI
Abstract The biomass of tropical forests plays an important role in the global carbon cycle, both as a dynamic reservoir of carbon, and as a source of carbon dioxide to the atmosphere in areas undergoing deforestation. However, the absolute magnitude and environmental determinants of tropical forest biomass are still poorly understood. Here, we present a new synthesis and interpolation of the basal area and aboveground live biomass of old-growth lowland tropical forests across South America, based on data from 227 forest plots, many previously unpublished. Forest biomass was analyzed in terms of two uncorrelated factors: basal area and mean wood density. Basal area is strongly affected by local landscape factors, but is relatively invariant at regional scale in moist tropical forests, and declines significantly at the dry periphery of the forest zone. Mean wood density is inversely correlated with forest dynamics, being lower in the dynamic forests of western Amazonia and high in the slow-growing forests of eastern Amazonia. The combination of these two factors results in biomass being highest in the moderately seasonal, slow growing forests of central Amazonia and the Guyanas (up to 350 Mg dry weight ha,1) and declining to 200,250 Mg dry weight ha,1 at the western, southern and eastern margins. Overall, we estimate the total aboveground live biomass of intact Amazonian rainforests (area 5.76 × 106 km2 in 2000) to be 93±23 Pg C, taking into account lianas and small trees. Including dead biomass and belowground biomass would increase this value by approximately 10% and 21%, respectively, but the spatial variation of these additional terms still needs to be quantified. [source]


Variation in wood density determines spatial patterns inAmazonian forest biomass

GLOBAL CHANGE BIOLOGY, Issue 5 2004
Timothy R. Baker
Abstract Uncertainty in biomass estimates is one of the greatest limitations to models of carbon flux in tropical forests. Previous comparisons of field-based estimates of the aboveground biomass (AGB) of trees greater than 10 cm diameter within Amazonia have been limited by the paucity of data for western Amazon forests, and the use of site-specific methods to estimate biomass from inventory data. In addition, the role of regional variation in stand-level wood specific gravity has not previously been considered. Using data from 56 mature forest plots across Amazonia, we consider the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in AGB. Mean stand-level wood specific gravity, on a per stem basis, is 15.8% higher in forests in central and eastern, compared with northwestern Amazonia. This pattern is due to the higher diversity and abundance of taxa with high specific gravity values in central and eastern Amazonia, and the greater diversity and abundance of taxa with low specific gravity values in western Amazonia. For two estimates of AGB derived using different allometric equations, basal area explains 51.7% and 63.4%, and stand-level specific gravity 45.4% and 29.7%, of the total variation in AGB. The variation in specific gravity is important because it determines the regional scale, spatial pattern of AGB. When weighting by specific gravity is included, central and eastern Amazon forests have significantly higher AGB than stands in northwest or southwest Amazonia. The regional-scale pattern of species composition therefore defines a broad gradient of AGB across Amazonia. [source]


The cation and silica chemistry of a Subandean river basin in western Amazonia

HYDROLOGICAL PROCESSES, Issue 7 2002
J. A. Sobieraj
Abstract We sampled river water at 13 locations in the Pichis basin, a 10 500 km2 large rainforest-covered drainage basin in Peru, to assess the influence of lithological variability and seasonality on water chemistry. The concentrations of major cations and silica show a strong seasonal dependence and a remarkable variability over short distances that is only weakly reduced in the wet season; cation concentrations in streams differ by up to 100% within a few kilometres. The lowest cation concentrations were associated with relatively cation-depleted upper Tertiary and lower Quaternary formations, whereas relatively cation-rich lower Tertiary and Jurassic formations left a clear calcium and sodium signal in the respective rivers. Cluster analysis, in conjunction with boxplots, suggests that the sampling locations can be segregated into three groups based on similarities of their geochemical signals. According to the previously defined criteria, one river is classified as a Group 2 river with 200 < TZ+ < 450 µeq/L, whereas all other rivers fall into Group 3 with 450 < TZ+ < 3000 µeq/L (where TZ+ refers to the total cation charge). Based on a comparison with other studies at different sections of the Amazon mainstem, the river chemistry of our study area is relatively enriched in K+, Mg2+ and Ca2+, and, consequently, has a higher TZ+ value, while being relatively depleted in silica. The influence of lithological variability on water chemistry must be considered in land-use change studies even at watershed areas of 26,3382 km2. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Ecological and genetic notes on Lindsaea digitata (Lindsaeaceae), a new fern species from western Amazonia

NORDIC JOURNAL OF BOTANY, Issue 3-4 2007
Samuli Lehtonen
Morphological, ecological and genetic evidence have revealed the existence of two sympatric species in what has previously been recognised as Lindsaea divaricata Klotzsch. The new species, Lindsaea digitata Lehtonen & Tuomisto, is described here, and its ecological and genetic differences from the apparently closely related L. divaricata are documented. [source]


Tree Community Change across 700 km of Lowland Amazonian Forest from the Andean Foothills to Brazil

BIOTROPICA, Issue 5 2008
Nigel C. A. Pitman
ABSTRACT We describe patterns of tree community change along a 700-km transect through terra firme forests of western Amazonia, running from the base of the Andes in Ecuador to the Peru,Brazil border. Our primary question is whether floristic variation at large scales arises from many gradual changes or a few abrupt ones. Data from 54 1-ha tree plots along the transect support the latter model, showing two sharp discontinuities in community structure at the genus level. One is located near the Ecuador,Peru border, where the suite of species that dominates large areas of Ecuadorean forest declines abruptly in importance to the east. This discontinuity is underlain by a subterranean paleoarch and congruent with a change in soil texture. A second discontinuity is associated with the shift from clay to white sand soils near Iquitos. We hypothesize that the first discontinuity is part of an edaphic boundary that runs along the Andean piedmont and causes a transition from tree communities preferring richer, younger soils near the base of the Andes to those preferring poorer, older soils farther east. Because the floristic changes observed at this discontinuity are conserved for large distances to the east and west of it, the discontinuity is potentially key for understanding floristic variation in western Amazonia. The significant floristic turnover at the Ecuador,Peru border suggests that the only large protected area in the region,Ecuador's Yasuní National Park,is not adequate protection for the very diverse tree communities that cover vast areas of northern Peru. RESUMEN Describimos cambios en la comunidad de árboles a lo largo de un transecto de 700 km que atraviesa los bosques de tierra firme de la Amazonía occidental, desde la base de los Andes en Ecuador hasta la frontera Perú-Brasil. Nuestra pregunta principal es si la variación florística a grandes escalas es generada a base de muchos cambios graduales o en unos pocos cambios abruptos. Datos de 54 parcelas de árboles de 1 ha a lo largo del transecto apoyan el segundo modelo, mostrando dos discontinuidades bien definidas en la estructura de la comunidad a nivel de género. Una discontinuidad está localizada cerca de la frontera Ecuador-Perú, donde el grupo de especies que domina grandes áreas de la Amazonía ecuatoriana declina abruptamente en importancia hacia el este. Esta discontinuidad está asociada con un paleoarco subterráneo y es congruente con cambios en la textura del suelo. Una segunda discontinuidad está asociada con un cambio de suelos arcillosos a suelos de arena blanca cerca de Iquitos. Sugerimos que la primera discontinuidad es parte de un limite edáfico que corre a lo largo del piedemonte andino y causa una transición de comunidades de árboles que prefieren suelos más fértiles y jóvenes cerca de los Andes, a aquellos que prefieren suelos más pobres y antiguos hacia el este. Ya que los cambios florísticos observados en esta discontinuidad se conservan por grandes distancias hacia el este y oeste, la discontinuidad es potencialmente clave para entender la variación florística en la Amazonía occidental. El importante recambio florístico en la frontera Ecuador-Perú sugiere que la única gran área protegida en la región,el Parque Nacional Yasuní en Ecuador,no presta protección adecuada a las muy diversas comunidades de árboles en el norte del Perú. [source]


Riqueza y Distribución Ecológica de Especies de Pteridofitas en la Zona del Río Yavarí-Mirín, Amazonía Peruana

BIOTROPICA, Issue 5 2007
Glenda G. Cárdenas
ABSTRACT We studied the ecological distribution of pteridophytes (ferns and fern allies) along eight 8-km transects covering 12.7 ha in Peruvian Amazonia. Subunits of 200 m2 of the transects have previously been classified into four different forest types, and here we document and quantify the floristic differences among these forest types. Pteridophytes have been suggested as an indicator group to classify rain forest habitats, but this requires that the ecological preferences of the species are well documented and consistent across geographic regions. Here we analyzed in detail the distribution and diversity patterns of 130 species across the four rain forest types. Relative species abundance and species diversity were similar among some of the forest types and differed among others, but the species composition differed markedly. Our results largely confirmed the earlier interpretation of the edaphic preferences of the pteridophyte species in western Amazonia. This supports the proposition that deterministic processes have an important role in influencing the floristic composition of Amazonian forests. RESUMEN Estudiamos la distribución ecológica de las pteridofitas (helechos y plantas afines) a lo largo de ocho transectos de 8 km cada uno, cubriendo un área total de 12.7 ha en la Amazonía peruana. Subunidades de 200 m2 de los transectos fueron anteriormente clasificadas en cuatro tipos diferentes de bosques, y aquí documentamos y cuantificamos las diferencias florísticas entre estos tipos de bosques. Las pteridofitas han sido recomendadas como un grupo indicador para clasificar los hábitat del bosque húmedo tropical, pero esto requiere que las preferencias ecológicas de las especies sean bien documentadas y consistentes a través de las regiones geográficas. Aquí analizamos en detalle los patrones de distribución y diversidad de 130 especies a través de los cuatro tipos de bosques. La abundancia relativa y la diversidad de especies fueron similares entre algunos de los tipos de bosque y diferentes entre otros, pero la composición florística difirió marcadamente. Nuestros resultados confirmaron en gran parte la previa interpretación de las preferencias edáficas de las especies de pteridofitas en la Amazonía occidental. Esto apoya la propuesta de que procesos deterministas influyen de manera importante en la composición florística de los bosques amazónicos. [source]