West Asia (west + asia)

Distribution by Scientific Domains


Selected Abstracts


Underground Vetch (Vicia sativa ssp. amphicarpa): A Potential Pasture and Forage Legume for Dry Areas in West Asia

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2003
A. M. Abd El Moneim
Abstract Subterranean vetch [Vicia sativa ssp. amphicarpa (Dorth.) Aschers & Graebn.] is native to disturbed grasslands of the Mediterranean basin where heavy grazing, seasonal drought and erosion act as strong selection forces. It produces two pod types, above-ground and 5 cm below the soil surface. Unlike subterranean clover (Trifolium subterranean L.), which buries its seeds after flowering above-ground, subterranean vetch flowers and forms pods beneath the soil surface on underground stems. The aerial pods are produced after vegetative development ceases, while the underground pods are produced in ontogeny. The ability of this unusual vetch to survive in marginal areas with low rainfall (about 250 mm year,1) and to produce nutritious herbage and pods is an important characteristic which helps address rehabilitation of degraded rangelands and increase feed production for small ruminants. Research at the International Center for Agricultural Research in the Dry Areas (ICARDA) during the 1988,93 growing seasons has assessed the herbage and seed productivity of underground vetch, its ability to grow in rotation with barley in marginal low-rainfall areas, and its capacity to regenerate after heavy grazing. Drier conditions in 1989 favoured earlier underground flowering; the number of underground pods was higher than that of aerial pods. Grain yield of barley (var. Atlas) was around 2.0 t ha,1 after underground vetch and only 1.2 t ha,1 after barley. Grazing underground vetch had no effect on the productivity of the succeeding barley crop. The aerial and underground pods serve two distinct functions; aerial pods increase dissemination within suitable habitats, while underground pods increase the probability of plant survival under adverse conditions such as drought and heavy grazing. Underground vetch has two potential uses, namely the rehabilitation of marginal areas and production in rotation with barley. [source]


Os incae: variation in frequency in major human population groups

JOURNAL OF ANATOMY, Issue 2 2001
TSUNEHIKO HANIHARA
The variation in frequency of the Inca bone was examined in major human populations around the world. The New World populations have generally high frequencies of the Inca bone, whereas lower frequencies occur in northeast Asians and Australians. Tibetan/Nepalese and Assam/Sikkim populations in northeast India have more Inca bones than do neighbouring populations. Among modern populations originally derived from eastern Asian population stock, the frequencies are highest in some of the marginal isolated groups. In Central and West Asia as well as in Europe, frequency of the Inca bone is relatively low. The incidence of the complete Inca bone is, moreover, very low in the western hemisphere of the Old World except for Subsaharan Africa. Subsaharan Africans show as a whole a second peak in the occurrence of the Inca bone. Geographical and ethnographical patterns of the frequency variation of the Inca bone found in this study indicate that the possible genetic background for the occurrence of this bone cannot be completely excluded. Relatively high frequencies of the Inca bone in Subsaharan Africans indicate that this trait is not a uniquely eastern Asian regional character. [source]


Short-term assessment of dung beetle response to carbosulfan treatment against desert locust in Sudan

JOURNAL OF APPLIED ENTOMOLOGY, Issue 8 2009
H. Eriksson
Abstract The beneficial role of dung beetles (Coleoptera: Scarabaeidae) is well known. Potential risks to these beetles from the widespread use of insecticides against the desert locust, a significant plant pest in Africa, the Near East and South West Asia, have not been studied previously. Short-term responses of dung beetles to carbamate carbosulfan (Marshal®, ultra low-volume formulation, 100 g active ingredient ha,1) were assessed during desert locust control operations at five sites within two major biotopes: Acacia tortilis shrubland and cultivated wetland; on the Red Sea Coast of Sudan. The study took place during January,February 2004. At each site, fresh dung from Zebu cows was placed in areas targeted for desert locust control. Dung pats were placed in plots in two areas and left for 24 h, before and after insecticide application. Beetles were extracted by floatation. There was a significant decrease in abundance between the pre- and post-spray period in treated areas for the Scarabaeinae species Onthophagus margaritifer (a dark colour morph). In contrast, it was found that Aphodius lucidus and beetles at the subfamily level of Aphodiinae increased in numbers after insecticide treatment. Mortality and sublethal impacts as well as a repellent effect of the insecticide may explain the decrease in Onthophagus margaritifer, while the increase in Aphodiinae beetles could be an indirect response to lower numbers of Scarabaeinae beetles in competing for the same resource. These organisms and the applied methodology may be useful for environmental monitoring of desert locust control, thus further studies are suggested. The assessment also revealed a marked difference between the two biotopes with high abundance and species richness of dung beetles in A. tortilis shrubland, while these measures were low in the cultivated wetland. Five new species of dung beetles for Sudan were found in this study. [source]


Climatic limits for the present distribution of beech (Fagus L.) species in the world

JOURNAL OF BIOGEOGRAPHY, Issue 10 2006
Jingyun Fang
Abstract Aim, Beech (Fagus L., Fagaceae) species are representative trees of temperate deciduous broadleaf forests in the Northern Hemisphere. We focus on the distributional limits of beech species, in particular on identifying climatic factors associated with their present range limits. Location, Beech species occur in East Asia, Europe and West Asia, and North America. We collated information on both the southern and northern range limits and the lower and upper elevational limits for beech species in each region. Methods, In total, 292 lower/southern limit and 310 upper/northern limit sites with available climatic data for all 11 extant beech species were collected by reviewing the literature, and 13 climatic variables were estimated for each site from climate normals at nearby stations. We used principal components analysis (PCA) to detect climatic variables most strongly associated with the distribution of beech species and to compare the climatic spaces for the different beech species. Results, Statistics for thermal and moisture climatic conditions at the lower/southern and upper/northern limits of all world beech species are presented. The first two PCA components accounted for 70% and 68% of the overall variance in lower/southern and upper/northern range limits, respectively. The first PCA axis represented a thermal gradient, and the second a moisture gradient associated with the world-wide distribution pattern of beech species. Among thermal variables, growing season warmth was most important for beech distribution, but winter low temperature (coldness and mean temperature for the coldest month) and climatic continentality were also coupled with beech occurrence. The moisture gradient, indicated by precipitation and moisture indices, showed regional differences. American beech had the widest thermal range, Japanese beeches the most narrow; European beeches occurred in the driest climate, Japanese beeches the most humid. Climatic spaces for Chinese beech species were between those of American and European species. Main conclusions, The distributional limits of beech species were primarily associated with thermal factors, but moisture regime also played a role. There were some regional differences in the climatic correlates of distribution. The growing season temperature regime was most important in explaining distribution of Chinese beeches, whilst their northward distribution was mainly limited by shortage of precipitation. In Japan, distribution limits of beech species were correlated with summer temperature, but the local dominance of beech was likely to be dependent on snowfall and winter low temperature. High summer temperature was probably a limiting factor for southward extension of American beech, while growing season warmth seemed critical for its northward distribution. Although the present distribution of beech species corresponded well to the contemporary climate in most areas, climatic factors could not account for some distributions, e. g., that of F. mexicana compared to its close relative F. grandifolia. It is likely that historical factors play a secondary role in determining the present distribution of beech species. The lack of F. grandifolia on the island of Newfoundland, Canada, may be due to inadequate growing season warmth. Similarly, the northerly distribution of beech in Britain has not reached its potential limit, perhaps due to insufficient time since deglaciation to expand its range. [source]


Systematics and biogeography of Klasea (Asteraceae,Cardueae) and a synopsis of the genus

BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2006
LUDWIG MARTINS
Klasea, traditionally treated as a section in Serratula, is now widely accepted at the generic level. A classification of the genus is presented here, accommodating the 46 species in ten sections based on nuclear ribosomal DNA external and internal transcribed spacer sequence data and morphology. New combinations for five species and ten subspecies are published, and a new hybrid species is described. The genus ranges from the Iberian Peninsula and north Africa through southern and eastern Europe, west and central Asia to the Himalayas, and the Far East of Russia and China. The ancestral area is in west Asia, most probably eastern Anatolia and northern and western Iran. In this region, representatives of all sections are present. The largest section Klasea diversified most likely in the mountains of central Asia. A key to all Klasea species is provided. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society, 2006, 152, 435,464. [source]