Home About us Contact | |||
Weeks Posttransplantation (week + posttransplantation)
Selected AbstractsIn Vivo Perfusion of Human Skin Substitutes With Microvessels Formed by Adult Circulating Endothelial Progenitor CellsDERMATOLOGIC SURGERY, Issue 2 2008ELAINE F. KUNG MD BACKGROUND At present, tissue-engineered human skin substitutes (HSSs) mainly function as temporary bioactive dressings due to inadequate perfusion. Failure to form functional vascular networks within the initial posttransplantation period compromises cell survival of the graft and its long-term viability in the wound bed. OBJECTIVES Our goal was to demonstrate that adult circulating endothelial progenitor cells (EPCs) seeded onto HSS can form functional microvessels capable of graft neovascularization and perfusion. MATERIALS AND METHODS Adult peripheral blood mononuclear cells (PBMCs) underwent CD34 selection and endothelial cell (EC) culture conditions. After in vitro expansion, flow cytometry verified EC phenotype before their incorporation into HSS. After 2 weeks in vivo, immunohistochemical analysis, immunofluorescent microscopy, and microfil polymer perfusion were performed. RESULTS CD34+ PBMCs differentiated into EPC demonstrating characteristic EC morphology and expression of CD31, Tie-2, and E-selectin after TNF,-induction. Numerous human CD31 and Ulex europaeus agglutinin-1 (UEA-1) microvessels within the engineered grafts (HSS/EPCs) inosculated with recipient murine circulation. Limitation of murine CD31 immunoreactivity to HSS margins showed angiogenesis was attributable to human EPC at 2 weeks posttransplantation. Delivery of intravenous rhodamine-conjugated UEA-1 and microfil polymer to HSS/EPCs demonstrated enhanced perfusion by functional microvessels compared to HSS control without EPCs. CONCLUSION We successfully engineered functional microvessels in HSS by incorporating adult circulating EPCs. This autologous EC source can form vascular conduits enabling perfusion and survival of human bioengineered tissues. [source] Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injuryJOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2009Seung I. Lee Abstract Transplantation of neural stem cells (NSCs) has shown promise for improving functional recovery after spinal cord injury (SCI). The inhospitable milieu of injured spinal cord, however, does not support survival of grafted NSCs, reducing therapeutic efficacy of transplantation. The present study sought to examine whether overexpression of antiapoptotic gene Bcl-XL in NSCs could promote graft survival and functional recovery following transplantation in rat contusive SCI model. A human NSC line (HB1.F3) was transduced with a retroviral vector encoding Bcl-XL to generate Bcl-XL -overexpressing NSCs (HB1.F3.Bcl-XL). Overexpression of Bcl-XL conferred resistance to staurosporine-mediated apoptosis. The number of HB1.F3.Bcl-XL cells was 1.5-fold higher at 2 weeks and 10-fold higher at 7 weeks posttransplantation than that of HB1.F3 cells. There was no decline in the number of HB1.F3.Bcl-XL cells between 2 and 7 weeks, indicating that Bcl-XL overexpression completely blocked cell death occurring between these two time points. Transplantation of HB1.F3.Bcl-XL cells improved locomotor scores and enhanced accuracy of hindlimb placement in a grid walk. Approximately 10% of surviving NSCs differentiated into oligodendrocytes. Surviving NSCs produced brain-derived neurotrophic factor (BDNF), and the level of BDNF was significantly increased only in the HB1.F3.Bcl-XL group. Transplantation of HB1.F3.Bcl-XL cells reduced cavity volumes and enhanced white matter sparing. Finally, HB1.F3.Bcl-XL grafts enhanced connectivity between the red nucleus and the spinal cord below the lesion. These results suggest that enhancing graft survival with antiapoptotic gene can potentiate therapeutic benefits of NSC-based therapy for SCI. © 2009 Wiley-Liss, Inc. [source] Corneal Graft Rejection Is Accompanied by Apoptosis of the Endothelium and Is Prevented by Gene Therapy With Bcl-xLAMERICAN JOURNAL OF TRANSPLANTATION, Issue 9 2007R. N Barcia Corneal transplants normally enjoy a high percentage of survival, mainly because the eye is an immune-privileged site. When allograft failure occurs, it is most commonly due to rejection, an immune-mediated reaction that targets the corneal endothelium. While the exact mechanism by which the endothelium is targeted is still unknown, we postulate that corneal endothelial cell loss during allograft failure is mediated by apoptosis. Furthermore, because corneal endothelial cells do not normally regenerate, we hypothesize that suppressing apoptosis in the graft endothelium will promote transplant survival. In a murine model of transplantation, TUNEL staining and confocal microscopy showed apoptosis of the graft endothelium occurring in rejecting corneas as early as 2 weeks posttransplantation. We found that bcl-xL protected cultured corneal endothelial cells from apoptosis and that lentiviral delivery of bcl-xL to the corneal endothelium of donor corneas significantly improved the survival of allografts. These studies suggest a novel approach to improve corneal allograft survival by preventing apoptosis of the endothelium. [source] Recovery of Functional Memory T Cells in Lung Transplant Recipients Following Induction Therapy with AlemtuzumabAMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2007A. Zeevi Profound T-cell depletion with the monoclonal antibody alemtuzumab facilitates reduced maintenance immunosuppression in abdominal and lung transplantation. While the phenotype of the post-depletional T cells has been characterized, little is known about their function. In the present study, global and CMV-specific T-cell function was assessed longitudinally in 23 lung transplant (LTx) recipients using T-cell assays (ImmuKnow® and T Cell MemoryŌ, Cylex, Columbia, MD) during the first year posttransplant after induction therapy. Recovery of mitogen responses were seen at 2 weeks posttransplantation (65%PHA; 58% Con A), despite the low number of circulating T cells (<2%). These responses declined at 4,5 months (24%PHA; 54% Con A) and were partially reconstituted by 9 months (46% PHA; 73% Con A). CMV-specific responses recovered in 80% of R+ patients as early as 2 weeks posttransplant (n = 5) and 72% of patients had a memory response by 3 months (n = 11). In contrast, only 2 of 5 patients who did not exhibit memory responses pre-transplant (R,) developed transient CMV-specific T-cell responses. Our results show that profound depletion of T cells induced by alemtuzumab spares the functional subset of CMV-specific memory T cells. Conversely, CMV R, patients predepletion may require a prolonged period of prophylaxis. [source] |