Home About us Contact | |||
Web Studies (web + studies)
Kinds of Web Studies Selected AbstractsComparing trophic position of stream fishes using stable isotope and gut contents analysesECOLOGY OF FRESHWATER FISH, Issue 2 2008S. M. Rybczynski Abstract,,, Stable isotope analysis (SIA) and gut contents analysis (GCA) are commonly used in food web studies, but few studies analyse these data in concert. We used SIA (,15N) and GCA (% composition) to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ordination analysis of gut contents identified two primary trophic groups, omnivores and predators. Significant differences in TPGCA and TPSIA were similar in direction among-species and among-trophic groups; neither method detected seasonal changes in omnivore diets. Within-species TPGCA and TPSIA were similar except for one omnivore. TPGCA was less variable than TPSIA for predators, but variation between methods was similar for omnivores. While both methods were equally robust at discriminating trophic groups of fishes, TPSIA is less laborious to estimate and may facilitate cross-stream comparisons of food web structure and energy flow. [source] Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studiesECOLOGY OF FRESHWATER FISH, Issue 3 2004M. A. Sotiropoulos Abstract,,, We examined whether solvent-based lipid extractions, commonly used for stable isotope analysis (SIA) of biota, alters ,15N or ,13C values of fish muscle tissue or whole juvenile fish. Lipid extraction from muscle tissue led to only small (<1,) isotope shifts in ,13C and ,15N values. By contrast, ecologically significant shifts (+3.4, for ,13C and +2.8, for ,15N) were observed for whole juvenile fish. Sample variance was not affected by lipid extraction. For tissue-specific SIA, two sample aliquots may be required: a lipid-extracted aliquot for stable carbon isotope analysis when differing lipid content among tissues is a concern, and a nonextracted aliquot for ,15N determination. Whole organism SIA is not recommended because of the mix of tissues having different turnover times; for very small fish, we recommend that fish be eviscerated, decapitated, and skinned to minimise differences with samples of muscle tissue. Resumen 1. Cada vez con mayor frecuencia, los ecólogos de peces utilizan análisis de isótopos estables. Por ello, se hace cada vez más importante comprender las fuentes de variación, - debido a diferencias inherentes entre muestreos biológicos o como resultado de técnicas de procesamiento de muestreo - tanto como identificar estrategias para tratar tales fuentes. Examinamos si la extracción de lípidos basada en disolventes, comúnmente utilizada en análisis de isótopos de carbono estable, altera negativamente los valores de ,15N y ,13C de tejido muscular de tres peces de tamaño pequeño y de peces juveniles completos. 2. La extracción de lípidos de músculo de pez llevó a pequeños cambios isotópicos de + +0.4 a +1.0, y de +0.3 a +0.5, para ,13C y ,15N, respectivamente. Por el contrario, la extracción de lípidos de peces juveniles completos varió marcadamente en +3.4, para ,13C y +2.8, para ,15N - ambos cambios ecológicamente importantes. La varianza de los valores de muestreos de ,13C y de ,15N tanto para tejido muscular como para los peces completos no difirieron entre los muestreos de lípidos extraídos y muestreos sin tratamiento. 3. Nuestros resultados recomiendan el análisis de isótopos estables de tejidos específicos. Cuando ello no es posible o deseable, dos alícuotas de muestreo pueden ser requeridas: una alícuota de lípidos extraídos para el análisis de isótopos de carbono estable cuando la varianza de ,13C, debida a diferencias en el contenido de lípidos de diferentes tejidos, y una alícuota de no-extracción para determinaciones de ,15N. 4. Dada la mezcla de tejidos, el análisis de isótopos de un organismo completo no es recomendable , en el caso de peces muy pequeños, recomendamos que los peces sean eviscerados, decapitados, y despellejados para minimizar las diferencias de muestreos de tejido muscular. [source] Explaining isotope trophic-step fractionation: why herbivorous fish are differentFUNCTIONAL ECOLOGY, Issue 6 2007A. C. MILL Summary 1An assumed constant trophic fractionation of 15N/14N between consumer and diet (usually 3·4 for diet,muscle tissue differences) allows inferences to be made about feeding interactions and trophic level in food web studies. However, considerable variability surrounds this constant, which may conceal subtle differences about the trophodynamics of consumers. 2The feeding ecologies of herbivores and carnivores differ in terms of diet quality (in C : N terms) and food processing mechanisms, which may affect fractionation. 3We present a new model that explores how consumer feeding rates, excretion rates and diet quality determine the 15N/14N ratios in the consumer's tissues and hence influence the magnitude of trophic fractionation. 4Three herbivorous reef fish Acanthurus sohal, Zebrasoma xanthurum and Pomacentrus arabicus were chosen as study organisms. Empirical estimates of diet,tissue stable isotope fractionation were made in the field, and model parameters were derived from feeding observations and literature data. 5The trophic fractionation values of A. sohal, Z. xanthurum and P. arabicus were 4·69, 4·47 and 5·25, respectively, by empirical measurement, and 4·41, 4·30 and 5·68, respectively, by model, indicating that herbivores have a higher trophic fractionation than the currently accepted value of 3·4. 6The model was most sensitive to the excretion rate, which may differ between herbivores and carnivorous animals. This model is the first to determine stable isotope signatures of a consumer's diet mixture without applying a constant fractionation value. [source] Measurement of body size and abundance in tests of macroecological and food web theoryJOURNAL OF ANIMAL ECOLOGY, Issue 1 2007SIMON JENNINGS Summary 1Mean body mass (W) and mean numerical (N) or biomass (B) abundance are frequently used as variables to describe populations and species in macroecological and food web studies. 2We investigate how the use of mean W and mean N or B, rather than other measures of W and/or accounting for the properties of all individuals, can affect the outcome of tests of macroecological and food web theory. 3Theoretical and empirical analyses demonstrate that mean W, W at maximum biomass (Wmb), W when energy requirements are greatest (Wme) and the W when a species uses the greatest proportion of the energy available to all species in a W class (Wmpe) are not consistently related. 4For a population at equilibrium, relationships between mean W and Wme depend on the slope b of the relationship between trophic level and W. For marine fishes, data show that b varies widely among species and thus mean W is an unreliable indicator of the role of a species in the food web. 5Two different approaches, ,cross-species' and ,all individuals' have been used to estimate slopes of abundance,body mass relationships and to test the energetic equivalence hypothesis and related theory. The approaches, based on relationships between (1) log10 mean W and log10 mean N or B, and (2) log10 W and log10 N or B of all individuals binned into log10 W classes (size spectra), give different slopes and confidence intervals with the same data. 6Our results show that the ,all individuals' approach has the potential to provide more powerful tests of the energetic equivalence hypothesis and role of energy availability in determining slopes, but new theory and empirical analysis are needed to explain distributions of species relative abundance at W. 7Biases introduced when working with mean W in macroecological and food web studies are greatest when species have indeterminate growth, when relationships between W and trophic level are strong and when the range of species'W is narrow. [source] Intra-lake stable isotope ratio variation in selected fish species and their possible carbon sources in Lake Kyoga (Uganda): implications for aquatic food web studiesAFRICAN JOURNAL OF ECOLOGY, Issue 3 2010Dismas Mbabazi Abstract The stable isotopes of nitrogen (,15N) and carbon (,13C) provide powerful tools for quantifying trophic relationships and carbon flow to consumers in food webs; however, the isotopic signatures of organisms vary within a lake. Assessment of carbon and nitrogen isotopic signatures in a suite of plants, invertebrates, and fishes in Lake Kyoga, indicated significant variation between two sites for ,13C (paired t = 6.305; df = 14, P < 0.001 and ,15N paired t = 1.292; df = 14; P < 0.05). The fish fauna in Bukungu was generally more 13C enriched (mean ,13C = ,16.37 ± 1.64,) than in Iyingo (mean ,13C = ,20.80 ± 2.41,) but more ,15N depleted (mean ,15N = 5.57 ± 0.71,) than in Iyingo (mean ,15N = 6.92 ± 0.83,). The simultaneous shifts in phytoplankton and consumer signatures confirmed phytoplankton as the major source of carbon for the food chain leading to fish. Limited sampling coverage within lakes may affect lake wide stable isotope signatures, and the same error is transferred into trophic position estimation. Consideration of potential intra-lake spatial variability in isotope ratios and size is essential in evaluating the spatial and trophic structure of fish assemblages. Résumé Les isotopes stables d'azote (,15N) et de carbone (,13C) sont des outils intéressants pour quantifier les relations trophiques et le flux de carbone vers les consommateurs de chaînes alimentaires; cependant, la signature isotopique des organismes varie au sein d'un même lac. L'évaluation des signatures isotopiques du carbone et de l'azote dans une suite de plantes, d'invertébrés et de poissons du lac Kyoga indiquait une variation significative entre deux sites pour ,13C (test t apparié = 6.305; df = 14; P < 0.05). La faune piscicole de Bukungu était généralement plus enrichie en ,13C (moyenne de ,13C = ,16.37 ± 1.64,) qu'à Iyingo (moyenne de ,13C = ,20.80 ± 2.41,) mais plus dépourvue de ,15N (moyenne de ,15N = 5.57 ± 0.71,) qu'Inyingo (moyenne de ,15N = 6.92 ± 0.83,). Les glissements simultanés des signatures du phytoplancton et des consommateurs confirmaient que le phytoplancton est la source principale de carbone de la chaîne alimentaire qui aboutit aux poissons. Une couverture limitée de l'échantillonnage dans les lacs peut affecter la signature des isotopes stables de tout le lac, et cette même erreur est reportée dans l'estimation de la situation trophique. Il est essentiel de tenir compte de la variabilité spatiale possible des taux et de la taille des isotopes dans les lacs lorsque l'on évalue la structure spatiale et trophique des assemblages de poissons. [source] |