Weather Service (weather + service)

Distribution by Scientific Domains

Kinds of Weather Service

  • national weather service


  • Selected Abstracts


    Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996

    GLOBAL CHANGE BIOLOGY, Issue 6 2001
    Annette Menzel
    Abstract Various indications for shifts in plant and animal phenology resulting from climate change have been observed in Europe. This analysis of phenological seasons in Germany of more than four decades (1951,96) has several major advantages: (i) a wide and dense geographical coverage of data from the phenological network of the German Weather Service, (ii) the 16 phenophases analysed cover the whole annual cycle and, moreover, give a direct estimate of the length of the growing season for four deciduous tree species. After intensive data quality checks, two different methods ,,linear trend analyses and comparison of averages of subintervals , were applied in order to determine shifts in phenological seasons in the last 46 years. Results from both methods were similar and reveal a strong seasonal variation. There are clear advances in the key indicators of earliest and early spring (,0.18 to ,0.23 d y,1) and notable advances in the succeeding spring phenophases such as leaf unfolding of deciduous trees (,0.16 to ,0.08 d y,1). However, phenological changes are less strong during autumn (delayed by +,0.03 to +,0.10 d y,1 on average). In general, the growing season has been lengthened by up to ,0.2 d y,1 (mean linear trends) and the mean 1974,96 growing season was up to 5 days longer than in the 1951,73 period. The spatial variability of trends was analysed by statistical means and shown in maps, but these did not reveal any substantial regional differences. Although there is a high spatial variability, trends of phenological phases at single locations are mirrored by subsequent phases, but they are not necessarily identical. Results for changes in the biosphere with such a high resolution with respect to time and space can rarely be obtained by other methods such as analyses of satellite data. [source]


    The Effect of Weather on Headache

    HEADACHE, Issue 6 2004
    Patricia B. Prince MD
    Objectives.,To assess headache patients' beliefs about how strongly weather affects their headaches; To objectively investigate the influence of multiple weather variables on headache. Design and Methods.,Our sample consisted of 77 migraineurs seen in a headache clinic, who provided headache calendars for a period ranging from 2 to 24 months. Our study was divided into two phases. First, each patient was given a questionnaire assessing their beliefs about how strongly (if so) weather affected their headaches. Second, weather data were collected from the National Weather Service, from three reporting stations central to the residences of the study participants. Analysis was performed on 43 variables to generate three meteorological factors. Linear regression was used to assess the relationship between headache and these three factors. Factor 1 represents a function of absolute temperature and humidity. Factor 2 represents a changing weather pattern. Factor 3 represents barometric pressure. Results.,Of the 77 subjects in the study, 39 (50.6%), were found to be sensitive to weather, but 48 (62.3%) thought they were sensitive to weather conditions (P < 0.05). Thirty (38.9%) were sensitive to one weather factor and 9 (11.7%) to two factors. Twenty-six (33.7%) were sensitive to factor 1; 11 (14.3%) to factor 2; 10 (12.9%) to factor 3. Conclusions.,Our study supports the influence of weather variables on headache. We showed that patients are susceptible to multiple weather variables and that more patients thought weather was a trigger than was the case. [source]


    An assessment of the differences between three satellite snow cover mapping techniques,

    HYDROLOGICAL PROCESSES, Issue 18 2002
    David Bitner
    Abstract The National Operational Hydrologic Remote Sensing Center (NOHRSC) of the National Oceanic and Atmospheric Administration's (NOAA's) National Weather Service (NWS) provides daily satellite-derived snow cover maps to support the NWS Hydrologic Services Program covering the coterminous USA and Alaska. This study compared the NOHRSC snow cover maps with new automated snow cover maps produced by the National Environmental Satellite, Data, and Information Service (NESDIS) and the snow cover maps created from the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. The purpose of this paper is to demonstrate and account for the differences that occur between the three different snow cover mapping techniques. Because each of these snow cover products uses data from different sensors at different resolutions, the data were degraded to the coarsest relevant resolution. In both comparisons, forest canopy density was examined as a possible explanatory factor to account for those differences. NOHRSC snow cover maps were compared with NESDIS snow cover maps for 32 different dates from November 2000 to February 2001. NOHRSC snow cover maps were also compared with MODIS snow cover maps in the Pacific Northwest and the Great Plains for 18 days and 21 days, respectively, between March and June 2001. In the first comparison, where the NOHRSC product (,1 km) was degraded to match the resolution of the NESDIS data (,5 km), the two products showed an average agreement of 96%. Forest canopy density data provided only weak explanation for the differences between the NOHRSC and the NESDIS snow cover maps. In the second comparison, where the MODIS product (,500 m) was degraded to match the resolution of the NOHRSC product for two sample areas, the agreement was 94% in the study area in the Pacific Northwest, and 95% in the study area in the Great Plains. Published in 2002 by John Wiley & Sons, Ltd. [source]


    Analysis and objective mapping of extreme daily rainfall in Catalonia

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 3 2007
    M. Carmen Casas
    Abstract The main objective of this study is to determine the maximum daily precipitation in Catalonia for several established return periods with a high spatial resolution. For this purpose, the maximum daily rainfall annual series from 145 pluviometric stations of the Instituto Nacional de Meteorología (INM) (Spanish Weather Service) in Catalonia have been analyzed. Using the L-moments method of Hosking, every series has been fitted by the extreme value distribution function of Gumbel. From this fitting, the maximum daily precipitation for each of the pluviometric stations corresponding to return periods between 2 and 500 years, have been determined. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems (GIS) techniques, have been used as the initial field for the analysis. The maximum daily precipitation at 1 km2 spatial resolution on Catalonia has been objectively determined by the method employed, and structures with wavelength longer than approximately 35 km can be identified. The results show that places where the maximum daily precipitation values are expected are the zone of Guilleries in the Transversal Range, in the highest zones of the Catalan Pyrenees and Cape Creus zone at the northeastern end of Catalonia and in the south, around the Prelittoral Mountain Range between the Mountains of Prades and Montsià. A good fit between the distribution of minimum values and the driest Catalan areas has been found, the lowest values being on the western end of the Central Basin. Copyright © 2006 Royal Meteorological Society. [source]


    Using SWAT to Model Streamflow in Two River Basins With Ground and Satellite Precipitation Data,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2009
    Kenneth J. Tobin
    Abstract:, Both ground rain gauge and remotely sensed precipitation (Next Generation Weather Radar , NEXRAD Stage III) data have been used to support spatially distributed hydrological modeling. This study is unique in that it utilizes and compares the performance of National Weather Service (NWS) rain gauge, NEXRAD Stage III, and Tropical Rainfall Measurement Mission (TRMM) 3B42 (Version 6) data for the hydrological modeling of the Middle Nueces River Watershed in South Texas and Middle Rio Grande Watershed in South Texas and northern Mexico. The hydrologic model chosen for this study is the Soil and Water Assessment Tool (SWAT), which is a comprehensive, physical-based tool that models watershed hydrology and water quality within stream reaches. Minor adjustments to selected model parameters were applied to make parameter values more realistic based on results from previous studies. In both watersheds, NEXRAD Stage III data yields results with low mass balance error between simulated and actual streamflow (±13%) and high monthly Nash-Sutcliffe efficiency coefficients (NS > 0.60) for both calibration (July 1, 2003 to December 31, 2006) and validation (2007) periods. In the Middle Rio Grande Watershed NEXRAD Stage III data also yield robust daily results (time averaged over a three-day period) with NS values of (0.60-0.88). TRMM 3B42 data generate simulations for the Middle Rio Grande Watershed of variable qualtiy (MBE = +13 to ,16%; NS = 0.38-0.94; RMSE = 0.07-0.65), but greatly overestimates streamflow during the calibration period in the Middle Nueces Watershed. During the calibration period use of NWS rain gauge data does not generate acceptable simulations in both watersheds. Significantly, our study is the first to successfully demonstrate the utility of satellite-estimated precipitation (TRMM 3B42) in supporting hydrologic modeling with SWAT; thereby, potentially extending the realm (between 50°N and 50°S) where remotely sensed precipitation data can support hydrologic modeling outside of regions that have modern, ground-based radar networks (i.e., much of the third world). [source]


    Three-dimensional spatial interpolation of surface meteorological observations from high-resolution local networks

    METEOROLOGICAL APPLICATIONS, Issue 3 2008
    Francesco Uboldi
    Abstract An objective analysis technique is applied to a local, high-resolution meteorological observation network in the presence of complex topography. The choice of optimal interpolation (OI) makes it possible to implement a standard spatial interpolation algorithm efficiently. At the same time OI constitutes a basis to develop, in perspective, a full multivariate data assimilation scheme. In the absence of a background model field, a simple and effective de-trending procedure is implemented. Three-dimensional correlation functions are used to account for the orographic distribution of observing stations. Minimum-scale correlation parameters are estimated by means of the integral data influence (IDI) field. Hourly analysis fields of temperature and relative humidity are routinely produced at the Regional Weather Service of Lombardia. The analysis maps show significant informational content even in the presence of strong gradients and infrequent meteorological situations. Quantitative evaluation of the analysis fields is performed by systematically computing their cross validation (CV) scores and by estimating the analysis bias. Further developments concern the implementation of an automatic quality control procedure and the improvement of error covariance estimation. Copyright © 2008 Royal Meteorological Society [source]


    Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti,Mi-2 autoantibodies in women

    ARTHRITIS & RHEUMATISM, Issue 8 2009
    Lori A. Love
    Objective Because studies suggest that ultraviolet (UV) radiation modulates the myositis phenotype and Mi-2 autoantigen expression, we conducted a retrospective investigation to determine whether UV radiation may influence the relative prevalence of dermatomyositis and anti,Mi-2 autoantibodies in the US. Methods We assessed the relationship between surface UV radiation intensity in the state of residence at the time of onset with the relative prevalence of dermatomyositis and myositis autoantibodies in 380 patients with myositis from referral centers in the US. Myositis autoantibodies were detected by validated immunoprecipitation assays. Surface UV radiation intensity was estimated from UV Index data collected by the US National Weather Service. Results UV radiation intensity was associated with the relative proportion of patients with dermatomyositis (odds ratio [OR] 2.3, 95% confidence interval [95% CI] 0.9,5.8) and with the proportion of patients expressing anti,Mi-2 autoantibodies (OR 6.0, 95% CI 1.1,34.1). Modeling of these data showed that these associations were confined to women (OR 3.8, 95% CI 1.3,11.0 and OR 17.3, 95% CI 1.8,162.4, respectively) and suggests that sex influences the effects of UV radiation on autoimmune disorders. Significant associations were not observed in men, nor were UV radiation levels related to the presence of antisynthetase or anti,signal recognition particle autoantibodies. Conclusion This first study of the distribution of myositis phenotypes and UV radiation exposure in the US showed that UV radiation may modulate the clinical and immunologic expression of autoimmune disease in women. Further investigation of the mechanisms by which these effects are produced may provide insights into pathogenesis and suggest therapeutic or preventative strategies. [source]