Wetland Communities (wetland + community)

Distribution by Scientific Domains


Selected Abstracts


Negative per capita effects of purple loosestrife and reed canary grass on plant diversity of wetland communities

DIVERSITY AND DISTRIBUTIONS, Issue 4 2006
Shon S. Schooler
ABSTRACT Invasive plants can simplify plant community structure, alter ecosystem processes and undermine the ecosystem services that we derive from biotic diversity. Two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), are becoming the dominant species in many wetlands across temperate North America. We used a horizontal, observational study to estimate per capita effects (PCEs) of purple loosestrife and reed canary grass on plant diversity in 24 wetland communities in the Pacific Northwest, USA. Four measures of diversity were used: the number of species (S), evenness of relative abundance (J), the Shannon,Wiener index (H,) and Simpson's index (D). We show that (1) the PCEs on biotic diversity were similar for both invasive species among the four measures of diversity we examined; (2) the relationship between plant diversity and invasive plant abundance ranges from linear (constant slope) to negative exponential (variable slope), the latter signifying that the PCEs are density-dependent; (3) the PCEs were density-dependent for measures of diversity sensitive to the number of species (S, H,, D) but not for the measure that relied solely upon relative abundance (J); and (4) invader abundance was not correlated with other potential influences on biodiversity (hydrology, soils, topography). These results indicate that both species are capable of reducing plant community diversity, and management strategies need to consider the simultaneous control of multiple species if the goal is to maintain diverse plant communities. [source]


Differences in seed mass between hydric and xeric plants influence seed bank dynamics in a dryland riparian ecosystem

FUNCTIONAL ECOLOGY, Issue 2 2008
J. C. Stromberg
Summary 1Dryland riparian zones have steep spatial gradients of soil moisture and flood disturbance, and the component hydrogeomorphic surfaces support hydric to xeric plant species. These systems undergo extremes of flood and drought, a dynamic that may select for persistent soil seed banks. We asked if reliance on this strategy differed among plants in three moisture groups (hydric, mesic and xeric), and if patterns were related to diaspore traits. 2We assessed the composition of soil and litter seed banks (emergence method) and extant vegetation along a riparian hydrogradient, and measured seed persistence (using an indirect method) and diaspore mass and shape variance of the component species. 3Hydroriparian species had smaller diaspores than xeroriparian species, corresponding to differences in selective pressures on seedlings in their respective habitats, but the two groups formed persistent seed banks at approximately equal percentages. Persistent seeds were smaller than transient seeds, but within the persistent seed group there was separation between the smaller-diaspored hydrophytes and larger-diaspored xerophytes. 4Distribution patterns of extant vegetation, in concert with diaspore trait differences among moisture-affinity groups, gave rise to divergent spatial patterns of diaspores within the soil: hydroriparian diaspores were abundant not only along wet channel bars but also in deep soils under floodplain forests and shrublands, presumably owing to dispersal by flood waters. Xeroriparian diaspores were largely restricted to the litter and upper soil layers of their drier, higher, floodplain habitats. With increasing depth in the soil of floodplain forests and shrublands, viable diaspores became smaller and rounder, and plant composition shifted from xeroriparian to hydroriparian species. 5The wide distribution of hydroriparian diaspores in floodplain soils influences disturbance dynamics, increasing the probability that ephemeral wetland communities will develop wherever suitable conditions are stochastically created by floods. Persistent seed banks also allow many xeric annuals to be maintained in dryland riparian zones throughout extended drought, similar to processes that occur in desert uplands. [source]


Participatory planning, management and alternative livelihoods for poor wetland-dependent communities in Kampala, Uganda

AFRICAN JOURNAL OF ECOLOGY, Issue 2009
Robert Kabumbuli
Abstract The paper is based on an on-going 3-year study in the wetland communities of Kampala. The study uses participatory methods and aims to contribute to (i) the development of low-income wetland communities, (ii) to prepare these communities to become less dependent on wetlands without receding into poverty, and (iii) the better management of the wetlands. The communities in direct dependence and intimate interaction with Nakivubo wetlands are mainly poor, live and work under hazardous conditions, and their activities pose a threat to the ecological function of the wetlands. Yet these wetlands are important for filtering the city's waste and storm water before it flows into Lake Victoria's Murchison Bay, which is Kampala's source of piped water. Government approaches to the problem of wetland encroachment have largely failed because they are confrontational, and are not consistent or participatory. The study has in the first year conducted a series of activities including stakeholder analysis, resource analysis, livelihood analysis, a questionnaire survey and action planning. Preliminary data show that wetland dependency is very high among the poor nearby communities. They practice cultivation, brick-making and harvesting of wetland vegetation. However, these activities are under threat because wetland resources are dwindling due to increasing population and over-use. Livelihoods are threatened not only by the decreasing productivity of the wetland, but also by the ever-present government threat to evict wetland encroachers to restore its ecology. The study therefore works with communities to prepare for less dependence on wetlands so that they do not suddenly recede into worse poverty if they are evicted. They formulate strategies to enhance alternative livelihood, and for management of the wetland. Action plans have been formulated to address the situation through a newly created association. [source]


Plant community properties predict vegetation resilience to herbivore disturbance in the Arctic

JOURNAL OF ECOLOGY, Issue 5 2010
James D. M. Speed
Summary 1.,Understanding the impact of disturbance on vegetation and the resilience of plant communities to disturbance is imperative to ecological theory and environmental management. In this study predictors of community resilience to a simulated natural disturbance are investigated. Responses to disturbance are examined at the community, plant functional type and species level. 2.,Field experiments were set up in seven tundra plant communities, simulating disturbance based on the impact of grubbing by an increasing herbivore population of pink-footed geese (Anser brachyrhynchus). The short-term resilience of communities was assessed by comparing community dissimilarity between control plots and plots subject to three disturbance intensities based on the foraging impact of these geese. Potential for long-term recovery was evaluated across different disturbance patch sizes. 3.,Resilience to disturbance varied between communities; those with higher moss cover and higher soil moisture, such as wetlands and mires, were most resilient to disturbance. 4.,The wetter communities demonstrated greater long-term recovery potential following disturbance. In wetland communities, vegetative recovery of vascular plants and moss was greater in smaller disturbed patches and at the edges of patches. 5.,The response of vegetation to disturbance varied with intensity of disturbance, plant community and plant species. The use of functional type classifications only partially explained the variation in species responses to disturbance across communities, thus their use in predicting community changes was limited. 6.,Synthesis. The impact of disturbance is shown to be plant-community specific and related to the initial abiotic and biotic properties of the community. By showing that resilience is partly predictable, the identification of disturbance-susceptible communities is possible, which is of relevance for ecosystem management. [source]


The effects of neighbouring tree islands on pollinator density and diversity, and on pollination of a wet prairie species, Asclepias lanceolata (Apocynaceae)

JOURNAL OF ECOLOGY, Issue 3 2006
DEREK R. ARTZ
Summary 1The Everglades (Florida, USA) is a mosaic of different habitats. Tropical and temperate trees grow on patches of high ground (tree islands) surrounded by lower elevation wetland communities (marl prairie). 2Tree islands of various sizes provide nesting substrate, larval host plants and floral resources for insect pollinators. Herbaceous plants in the open surrounding wetlands may also depend on these pollinators. 3We investigated pollinator diversity and abundances in both tree island and marl prairie habitats using transect sampling methods and estimated pollination success of the milkweed Asclepias lanceolata, an insect-pollinated marl prairie species, in relation to distance from and size of the closest tree island. 4On a total of 11 bayhead tree islands, we found that insect diversity and abundance were greater on the edge of larger tree islands (20,30 m2) than on smaller tree islands (5,10 m2). Pollinator diversity and abundance in the marl prairie decreased with increasing distance from tree islands. 5Pairs of potted A. lanceolata plants were placed in the marl prairie at distances up to 1000 m from small and large tree islands. Fruit and seed production were highest for plants placed less than 25 m from tree islands and decreased with increasing distance. 6Our results suggest that tree islands are an important source of pollinators for the plants in the tree island and surrounding wetland habitats. 7This landscape-based study illustrates how overall landscape structure affects important biotic interactions, particularly plant,pollinator relationships. Our findings have far-reaching ecological implications for the reproductive success of plants in small, isolated populations that may depend on insect vectors for pollination. [source]


Microsatellite variation within and among North American lineages of Phragmites australis

MOLECULAR ECOLOGY, Issue 7 2003
K. Saltonstall
Abstract Over the past century, the spread of the common reed (Phragmites australis) has had a dramatic impact on wetland communities across North America. Although native populations of Phragmites persist, introduced invasive populations have dominated many sites and it is not clear if the two types can interbreed. This study compares patterns of differentiation in 10 microsatellite loci among North American and European Phragmites individuals with results obtained from sequencing of noncoding chloroplast DNA. Three population lineages (native, introduced and Gulf Coast) were previously identified in North America from chloroplast DNA and similar structuring was found in the nuclear genome. Each lineage was distinguished by unique alleles and allele combinations and the introduced lineage was closely related to its hypothesized source population in Europe. Size homoplasy and diagnostic base substitutions distinguishing lineages were evident at several loci, further emphasizing that native, introduced and Gulf Coast North American Phragmites lineages are genetically distinct. Gene flow between lineages was low and invasive introduced populations do not represent a hybrid population type. [source]


Seed production in fens and fen meadows along a disturbance gradient

APPLIED VEGETATION SCIENCE, Issue 3 2009
A. Klimkowska
Abstract Question: The seed production in several wetland communities across Europe was investigated and differences in seed output in relation to disturbance intensity were tested. The relationship between the vegetation composition and the seed production profile was examined and the results are discussed in relation to restoration. Location: Poland, Germany and the Netherlands. Methods: The seed production in various plant communities was estimated, based on field counts. In addition, records from available databases were used for missing data. Multivariate methods were used to characterize the vegetation and seed production. Communities were grouped according to level of disturbance and tested for differences in seed production. Similarity between vegetation composition and seed profile was examined using the Sørensen index and Spearman correlation coefficient. Results: It was found that the seed production of the studied communities is large, variable and in general increasing with disturbance intensity. The estimated median seed production was ca. 24 × 103 seeds m,2 in fens, 167 × 103 in fen meadows and 556 × 103 seeds m,2 in degraded meadows. The majority of seeds was produced by just a few species. The similarity between the vegetation composition and the seed production profile was low (similarity 52%, correlation coefficient 0.42, P<0.05) and slightly increased with disturbance intensity. Conclusions: Increased disturbance enhances seed production at the community level. The composition of the vegetation is a poor predictor of the seed output. It is estimated that the number of seeds transferred with hay is much lower than the seed production in fens and fen meadows. [source]


BIODIVERSITY RESEARCH: Native-exotic species richness relationships across spatial scales and biotic homogenization in wetland plant communities of Illinois, USA

DIVERSITY AND DISTRIBUTIONS, Issue 5 2010
Hua Chen
Abstract Aim, To examine native-exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location, Illinois, USA. Methods, We analysed the native-exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman's correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard's and Simpson's similarity indices. Results, At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native-exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard's and Simpson's indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions, Our study demonstrated a clear shift from a positive to a negative native-exotic species richness relationship from larger to smaller spatial scales. The negative native-exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native-exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion. [source]