Home About us Contact | |||
Well-known Inducer (well-known + inducer)
Selected AbstractsSearching for Links between Endotoxin Exposure and Pregnancy Loss: CD14 Polymorphism in Idiopathic Recurrent MiscarriageAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2003Jari Karhukorpi Problem: Lipopolysaccharide (LPS) (endotoxin) is a well-known inducer of abortions in mice. In addition it has been proposed that gut-derived LPS of gram-negative bacteria may play a role in triggering idiopathic recurrent miscarriage (IRM) in humans. CD14 is one of the key molecules that mediates the effects of LPS. Promoter region polymorphism (,159C/T) in the CD14 gene is functionally important by regulating CD14 levels. High-producing CD14 genotype (TT) associates with deleterious effects of gut-derived LPS in hepatic cirrhosis in humans. It is not known whether women with IRM are genetically more prone to suffer from toxic effects of LPS. Method of study: By using polymerase chain reaction we analyzed the CD14 promoter region polymorphism in 38 women with IRM and in 127 normal controls of Finnish origin. Results: There were no significant differences in the CD14(,159C/T) allele or the genotype frequencies between the IRM women and the controls. However, there was a trend associating the presence of the T allele with increased odds of miscarriage. Conclusions: Although we were not able to find a statistically significant association between CD14 genotypes and IRM in our relatively small study population, a further study with a larger sample size is warranted to explore the role of high-producing CD14 genotypes in IRM. Also studies highlighting environmental LPS triggers and other intrinsic mediators of LPS signalling are needed to solve the enigmatic role of LPS in IRM in humans. [source] CYP3A inductive potential of the rifamycins, rifabutin and rifampin, in the rabbitBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 4 2001Allan Weber Abstract Rifabutin is effective in the treatment and prevention of Mycobacterium avium infection in people with HIV infection. Rifabutin is structurally related to another rifamycin, rifampin, a well-known inducer of the human P-450 isoform 3A. The rabbit isoform CYP3A6 and the human isoform CYP3A4 have similar P-450 predominance and substrate specificity and are both induced by rifampin. Our goal was to predict the CYP3A induction capacity of rifabutin and to determine if ex vivo CYP3A induction potential of rifamycins is predictive of that obtained in vivo. We determined the in vivo and ex vivo CYP3A6 induction by 4 days of treatment with rifabutin (100 mg/kg), rifampin (100 mg/kg), or vehicle (DMSO) in the rabbit. The ex vivo measures were CYP3A6 activity (N-demethylation of erythromycin and hydroxylation of triazolam) and CYP3A content in rabbit hepatic microsomes preparations. The in vivo measures were oral clearance of triazolam and its formation clearance to its hydroxylated metabolites, , -hydroxytriazolam and 4-hydroxytriazolam. Rifampin increased CYP3A6 activity by 2- to 3-fold in hepatic microsomes compared to vehicle. Rifabutin increased CYP3A content 1.7-fold, but did not significantly increase microsomal CYP3A6 activity. Oral triazolam clearance and formation clearances to the two hydroxylated metabolites were 2- to 3-fold greater in rabbits treated with rifampin. These clearances were unaffected by rifabutin administration. Ex vivo enzyme activities correlated with in vivo changes in clearance of triazolam and the formation clearance to its hydroxylated metabolites. Rifabutin is a weaker inducer of CYP3A6 than rifampin. These data suggest that ex vivo enzyme activity is a viable approach to predict in vivo inductive potential of CYP3A inducers. Copyright © 2001 John Wiley & Sons, Ltd. [source] 2233: Endoplasmic reticulum stress and inflammation signaling in RPE cellsACTA OPHTHALMOLOGICA, Issue 2010A SALMINEN Pathogenesis of AMD is linked to augmentation of cellular stress, e.g. oxidative and proteotoxic stress, hypoxia and inflammation. All these conditions trigger stress in endoplasmic reticulum (ER) and in that way can disturb the protein quality control in retinal pigment epithelial (RPE) cells. ER stress stimulates the unfolded protein response (UPR) via the activation of IRE1, PERK and ATF6 transducers. The UPR signaling can restore cellular homeostasis but chronic and overwhelming stress can induce inflammatory response via different UPR signaling pathways and lead to apoptotic cell death. Moreover, ER stress is a well-known inducer of vascular endothelial growth factor (VEGF) expression and in AMD, ER stress could provoke neovascularization and the conversion of dry form to wet counterpart. ER stress has a fundamental role in the pathogenesis of several diseases, e.g. in diabetes and neurodegenerative diseases. This lecture will review the recent advance in understanding the inducers of ER stress, present in RPE cells during AMD, and the possible role of ER stress in evoking inflammation and neovascularization during the pathogenesis of AMD. [source] A Comparative Pharmacokinetic Study in Healthy Volunteers of the Effect of Carbamazepine and Oxcarbazepine on Cyp3a4EPILEPSIA, Issue 3 2007Astrid-Helene Andreasen Summary:,Purpose: Carbamazepine (CBZ) and oxcarbazepine (OXCZ) are well-known inducers of drug metabolism via CYP3A4. Indirect interaction studies and clinical experience suggest that CBZ has a stronger potential in this regard than OXCZ. However this has never been subject to a direct comparative study. We performed a study in healthy volunteers to investigate the relative inductive effect of CBZ and OXCZ on CYP3A4 activity using the metabolism of quinidine as a biomarker reaction. Methods: Ten healthy, male volunteers participated in an open, randomized crossover study consisting of two periods separated by a 4-week wash-out period. The subjects received 1200 mg oral OXCZ daily for 17 days and 800 mg oral CBZ for 17 days. A single 200 mg oral dose of quinidine was administered at baseline and following administration of CBZ and OXCZ. Outcome parameters were the formation clearance of 3-hydroxyquinidine dose and the ratio of the AUCs of 3-hydroxyquinidine to quinidine. Results: Formation clearance of 3-hydroxyquinidine was increased by means of 89% (CI: 36,164; p = 0.0022) and 181% (CI: 120,260, p < 0.0001) after treatment with OXCZ and CBZ, respectively, compared to baseline. The relative inductive effect of CBZ was 46% higher than for OXCZ. AUC ratio increased by means of 161% (CI: 139,187, p < 0.0001) (OXCZ) and 222% (CI: 192,257, p < 0.0001) (CBZ). Quinidine Cmax decreased by means of 29% (CI: 16,40, p = 0.0018) (OXCZ) and 33% (CI: 18,45, p = 0.0020) (CBZ). T½ decreased by means of 12% (CI: 6,17, p < 0.0014) (OXCZ) and 32% (CI: 25,38, p < 0.0001) (CBZ). tmax was not changed in either period. Conclusion: We confirm a clinically significant inductive effect of both OXCZ and CBZ. The inductive effect of CBZ was about 46% higher than that of OXCZ, a difference that may be of clinical relevance. [source] Aberrant DNA methylation in contrast with mutationsCANCER SCIENCE, Issue 2 2010Toshikazu Ushijima Aberrant DNA methylation is known as an important cause of human cancers, along with mutations. Although aberrant methylation was initially speculated to be similar to mutations, it is now recognized that methylation is quite unlike mutations. Whereas the number of mutations in individual cancer cells is estimated to be ,80, that of aberrant methylation of promoter CpG islands reaches several hundred to 1000. Although mutations of a specific gene are very few in non-cancerous (thus polyclonal) tissues (usually at 1 × 10,5/cell), aberrant methylation of a specific gene can be present up to several 10% of cells. Mutagenic chemicals and radiation are well-known inducers of mutations, whereas chronic inflammation is deeply involved in methylation induction. Although mutations are induced in mostly random genes, methylation is induced in specific genes depending on tissues and inducers. Methylation is potentially reversible, unlike mutations. These characteristics of methylation are opening up new fields of application and research. (Cancer Sci 2009) [source] |