Water-Quality Assessment (water-quality + assessment)

Distribution by Scientific Domains


Selected Abstracts


Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition

FRESHWATER BIOLOGY, Issue 8 2003
Marina Potapova
Summary 1We quantified the relationships between diatom relative abundance and water conductivity and ionic composition, using a dataset of 3239 benthic diatom samples collected from 1109 river sites throughout the U.S.A. [U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program dataset]. This dataset provided a unique opportunity to explore the autecology of freshwater diatoms over a broad range of environmental conditions. 2Conductivity ranged from 10 to 14 500 ,S cm,1, but most of the rivers had moderate conductivity (interquartile range 180,618 ,S cm,1). Calcium and bicarbonate were the dominant ions. Ionic composition, however, varied greatly because of the influence of natural and anthropogenic factors. 3Canonical correspondence analysis (CCA) and Monte Carlo permutation tests showed that conductivity and abundances of major ions (HCO + CO, Cl,, SO, Ca2+, Mg2+, Na+, K+) all explained a statistically significant amount of the variation in assemblage composition of benthic diatoms. Concentrations of HCO + CO and Ca2+ were the most significant sources of environmental variance. 4The CCA showed that the gradient of ionic composition explaining most variation in diatom assemblage structure ranged from waters dominated by Ca2+ and HCO + CO to waters with higher proportions of Na+, K+, and Cl,. The CCA also revealed that the distributions of some diatoms correlated strongly with proportions of individual cations and anions, and with the ratio of monovalent to divalent cations. 5We present species indicator values (optima) for conductivity, major ions and proportions of those ions. We also identify diatom taxa characteristic of specific major-ion chemistries. These species optima may be useful in future interpretations of diatom ecology and as indicator values in water-quality assessment. [source]


Mercury Accumulation in Periphyton of Eight River Ecosystems,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2007
Amanda H. Bell
Abstract:, In 2003, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program and U.S. Environmental Protection Agency studied total mercury (THg) and methylmercury (MeHg) concentrations in periphyton at eight rivers in the United States in coordination with a larger USGS study on mercury cycling in rivers. Periphyton samples were collected using trace element clean techniques and NAWQA sampling protocols in spring and fall from targeted habitats (streambed surface-sediment, cobble, or woody snags) at each river site. A positive correlation was observed between concentrations of THg and MeHg in periphyton (r2 = 0.88, in log-log space). Mean MeHg and THg concentrations in surface-sediment periphyton were significantly higher (1,333 ng/m2 for MeHg and 53,980 ng/m2 for THg) than cobble (64 ng/m2 for MeHg and 1,192 ng/m2 for THg) or woody snag (71 ng/m2 for MeHg and 1,089 ng/m2 for THg) periphyton. Concentrations of THg in surface-sediment periphyton had a strong positive correlation with concentrations of THg in sediment (dry weight). The ratio of MeHg:THg in surface-sediment periphyton increased with the ratio of MeHg:THg in sediment. These data suggest periphyton may play a key role in mercury bioaccumulation in river ecosystems. [source]


Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition

FRESHWATER BIOLOGY, Issue 8 2003
Marina Potapova
Summary 1We quantified the relationships between diatom relative abundance and water conductivity and ionic composition, using a dataset of 3239 benthic diatom samples collected from 1109 river sites throughout the U.S.A. [U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program dataset]. This dataset provided a unique opportunity to explore the autecology of freshwater diatoms over a broad range of environmental conditions. 2Conductivity ranged from 10 to 14 500 ,S cm,1, but most of the rivers had moderate conductivity (interquartile range 180,618 ,S cm,1). Calcium and bicarbonate were the dominant ions. Ionic composition, however, varied greatly because of the influence of natural and anthropogenic factors. 3Canonical correspondence analysis (CCA) and Monte Carlo permutation tests showed that conductivity and abundances of major ions (HCO + CO, Cl,, SO, Ca2+, Mg2+, Na+, K+) all explained a statistically significant amount of the variation in assemblage composition of benthic diatoms. Concentrations of HCO + CO and Ca2+ were the most significant sources of environmental variance. 4The CCA showed that the gradient of ionic composition explaining most variation in diatom assemblage structure ranged from waters dominated by Ca2+ and HCO + CO to waters with higher proportions of Na+, K+, and Cl,. The CCA also revealed that the distributions of some diatoms correlated strongly with proportions of individual cations and anions, and with the ratio of monovalent to divalent cations. 5We present species indicator values (optima) for conductivity, major ions and proportions of those ions. We also identify diatom taxa characteristic of specific major-ion chemistries. These species optima may be useful in future interpretations of diatom ecology and as indicator values in water-quality assessment. [source]


Using GIS and a digital elevation model to assess the effectiveness of variable grade flow diversion terraces in reducing soil erosion in northwestern New Brunswick, Canada

HYDROLOGICAL PROCESSES, Issue 23 2009
Qi Yang
Abstract Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS-based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub-basin level. The model was used to estimate the soil conservation support practice factor (P -factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture-dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P -factors. The estimated P -factors ranged from 0·38,1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water-quality assessment. The model estimated that the average annual sediment yield was 773 kg ha,1 yr ,1 compared with a measured value of 641 kg ha,1 yr,1. The P -factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P -factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd. [source]