Water Quantity (water + quantity)

Distribution by Scientific Domains


Selected Abstracts


Semianalytical Solutions for Stream Depletion in Partially Penetrating Streams

GROUND WATER, Issue 1 2004
Xunhong Chen
In the analysis of streamflow depletion, the Hunt (1999) solution has an important advantage because it considers a partially penetrating stream. By extending the Hunt drawdown solution, this paper presents semianalytical solutions for gaining streams that evaluate the induced stream infiltration and base flow reduction separately. Simulation results show that for a given ,h (the initial hydraulic head difference between stream and aquifer beneath the channel), the base flow reduction is in direct proportion to the product of streambed leakage (,) and the distance between pumping well and stream (L), and the induced stream infiltration is in inverse proportion to ,L. ,h has a significant effect on the ratio of stream infiltration to base flow reduction. The results from the semianalytical solutions agree well with those from MODFLOW simulations. The semianalytical solutions are useful in the verification of numerical simulations and in the analysis of stream-aquifer interactions where water quantity or quality is concerned. [source]


Assessing the results of scenarios of climate and land use changes on the hydrology of an Italian catchment: modelling study

HYDROLOGICAL PROCESSES, Issue 19 2010
Daniela R. D'Agostino
Abstract Hydrological models are recognized as valid scientific tools to study water quantity and quality and provide support for the integrated management and planning of water resources at different scales. In common with many catchments in the Mediterranean, the study catchment has many problems such as the increasing gap between water demand and supply, water quality deterioration, scarcity of available data, lack of measurements and specific information. The application of hydrological models to investigate hydrological processes in this type of catchments is of particular relevance for water planning strategies to address the possible impact of climate and land use changes on water resources. The distributed catchment scale model (DiCaSM) was selected to study the impact of climate and land use changes on the hydrological cycle and the water balance components in the Apulia region, southern Italy, specifically in the Candelaro catchment (1780 km2). The results obtained from this investigation proved the ability of DiCaSM to quantify the different components of the catchment water balance and to successfully simulate the stream flows. In addition, the model was run with the climate change scenarios for southern Italy, i.e. reduced winter rainfall by 5,10%, reduced summer rainfall by 15,20%, winter temperature rise by 1·25,1·5 °C and summer temperature rise by 1·5,1·75 °C. The results indicated that by 2050, groundwater recharge in the Candelaro catchment would decrease by 21,31% and stream flows by 16,23%. The model results also showed that the projected durum wheat yield up to 2050 is likely to decrease between 2·2% and 10·4% due to the future reduction in rainfall and increase in temperature. In the current study, the reliability of the DiCaSM was assessed when applied to the Candelaro catchment; those parameters that may cause uncertainty in model output were investigated using a generalized likelihood uncertainty estimation (GLUE) methodology. The results showed that DiCaSM provided a small level of uncertainty and subsequently, a higher confidence level. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Advances in the application of the SWAT model for water resources management

HYDROLOGICAL PROCESSES, Issue 3 2005
R. Jayakrishnan
Abstract Developments in computer technology have revolutionized the study of hydrologic systems and water resources management. Several computer-based hydrologic/water quality models have been developed for applications in hydrologic modelling and water resources studies. Distributed parameter models, necessary for basin-scale studies, have large input data requirements. Geographic information systems (GIS) and model,GIS interfaces aid the efficient creation of input data files required by such models. One such model available for the water resources professional is the Soil and Water Assessment Tool (SWAT), a distributed parameter model developed by the United States Department of Agriculture. This paper describes some recent advances made in the application of SWAT and the SWAT,GIS interface for water resources management. Four case studies are presented. The Hydrologic Unit Model for the United States (HUMUS) project used SWAT to conduct a national-scale analysis of the effect of management scenarios on water quantity and quality. Integration of the SWAT model with rainfall data available from the WSR-88D radar network helps us to incorporate the spatial variability of rainfall into the modelling process. This study demonstrates the usefulness of radar rainfall data in distributed hydrologic studies and the potential of SWAT for application in flood analysis and prediction. A hydrologic modelling study of the Sondu river basin in Kenya using SWAT indicates the potential for application of the model in African watersheds and points to the need for development of better model input data sets in Africa, which are critical for detailed water resources studies. The application of SWAT for water quality analysis in the Bosque river basin, Texas demonstrates the strength of the model for analysing different management scenarios to minimize point and non-point pollution, and its potential for application in total maximum daily load (TMDL) studies. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China

HYDROLOGICAL PROCESSES, Issue 12 2004
Changming Liu
Abstract This paper deals with hydrological research in regard to the water resources crisis in the vulnerable areas found in the northern part of China. This area includes three main river basins, namely the basins of the Yellow (Huang) River, the Hai River and the Huai River. Several water problems are becoming very severe. Among them, two are the most critical: the Yellow River has been drained dry in the main course of its lower reaches and along its major tributaries, and the groundwater table has rapidly declined in the floodplains of the three rivers' downstream areas. To counter the problems, particularly the critical issues mentioned above, hydrological research, which serves as the basis of water development and management, has been carried out in the last two decades. This paper addresses three basic scientific problems in North China, namely: (a) water consumption and the capacity for saving water; (b) the changes in hydrological processes and water resources caused by natural change and human activities; and (c) the ability to supply water resources and water safety in terms of both quantity and quality within a changing environment. However, opportunities and challenges for ameliorating the problems exist, and new ideas and methodology to solve the problems have been proposed, such as the interface process study on the interactions in the soil,root interface, the plant,atmosphere interface, the soil,atmosphere interface, and the interface of soil water and groundwater. In order to manage water resources in a sustainable manner, the study of water resources' renewal ability as affected by natural change and human activity is addressed from the viewpoint of both water quantity and quality, and their integration. To reduce the vulnerability of water resources in regional water management, a paradigm of sustainable water resources utilization is also proposed, using water,heat balance, water,salt balance, water,sediment balance, and water supply,demand balance. This approach may help reveal the basic problems and point to possible approaches to solving the water problems in North China in the 21st century. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Assessment of the water,salinity crop production function of wheat using experimental data of the Golestan province, Iran,

IRRIGATION AND DRAINAGE, Issue 4 2009
A. R. Kiani
stress hydrique; stress de salinité; fonctions de production; blé Abstract Optimisation of agricultural water management in arid and semi-arid regions requires the availability of water,salinity crop production functions. A two-year experiment was conducted in the northern Golestan province of Iran to assess the water,salinity production function of wheat. The treatments in the experiment consisted of four levels of irrigation water, i.e. 50 (W1), 75 (W2), 100 (W3) and 125 (W4) % of crop water requirement, and four levels of water salinity, respectively 1.5 (S1), 8.5 (S2), 11.5 (S3) and 14.2 (S4) dS,m,1. The plots were arranged in a randomised complete block design with three replications and water quantity as main plot treatment and water quality as subplot treatment. The data were analysed using linear, quadratic, Cobb,Douglas and transcendental functions, complemented with an economic analysis. The results indicate that for the given climate,soil conditions, transcendental functions best predict wheat yield under both water and salinity stress conditions. Yield reduction caused by a unit increase of matric potential is found to be larger than that caused by a unit increase of osmotic potential. The marginal rate of technical substitution indicates that each one of the two factors studied, namely soil salinity and water supply, can be substituted with the other in a wide range in order to achieve equal amount of yield. Copyright © 2008 John Wiley & Sons, Ltd. L'optimisation de la gestion de l'eau agricole dans les zones arides et semi-arides nécessite de savoir la relation entre l'apport d'eau selon sa salinité et la production végétale. Une expérience de deux ans a été menée dans le nord de la province du Golestan en Iran pour évaluer la fonction de production de l'eau saline sur le blé. Les traitements expérimentaux consistaient en quatre niveaux d'apports d'eau soit 50% (W1), 75% (W2), 100% (W3) et 125% (W4) des besoins en eau des cultures, et quatre niveaux de salinité de l'eau, respectivement 1.5 (S1), 8.5 (S2), 11.5 (S3) et 14.2 (S4) dS,m,1. Les parcelles ont été disposées dans un bloc de Fisher randomisé avec trois répétitions avec la quantité de l'eau comme variable principale et la qualité de l'eau comme variable secondaire. Les données ont été analysées en utilisant les fonctions linéaires, quadratiques, Cobb,Douglas et transcendantes, complétées par une analyse économique. Les résultats indiquent que, pour un climat et un état du sol donnés, les fonctions transcendantes donnent les meilleures prédictions du rendement de blé en condition de salinité et de stress hydrique. La baisse de rendement causée par une augmentation d'une unité de potentiel hydrique est plus importante que celle causée par l'augmentation d'une unité de potentiel osmotique. Le taux marginal de substitution technique indique que chacun des deux facteurs étudiés, à savoir la salinité des sols et l'apport d'eau, peuvent être largement substitués l'un à l'autre pour viser rendement identique. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effective Efficiency as a Tool for Sustainable Water Resources Management,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2008
Naim Haie
Abstract:, The sufficiency and usefulness of Effective Efficiency (EE) as a water resources index is shown through conceptual formulation of a generalized EE and practical applications. Two EE models are proposed: one is based on water quantity and the other on quantity and quality, with the possibility of considering water reuse (recycling) in both. These models were developed for two scales: the first is called Project EE and the second Basin EE. The latter gives the influence of the project on the water resources systems of the basin while the former does not make such connection to the whole basin. Such considerations give proper signals as to the adequacy of any intervention to increase efficiency. A crucial distinction is made between depletion and diversion water savings. Classical Efficiency (CE) models are analyzed and compared with the various EE models. CE results in values that are less than EE because of not considering water reuse and water quality in its calculation. Some authors, pointing to these problems , particularly the first problem , have advocated the use of hydrological "fractions" instead of efficiency concepts. This paper defends the use of a proper efficiency model such as EE and suggests putting an end to the use of the CE indicators. To test the models, they are applied to five cases of irrigation and city water use in the United States and Egypt. The analysis of the results demonstrates all the points mentioned above and the potential of the EE models to adequately describe the water resources efficiency and sustainability at a location. [source]


STREAMFLOW DEPLETION: MODELING OF REDUCED BASEFLOW ANI INDUCED STREAM INFILTRATION FROM SEASONALLY PUMPED WELLS,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 1 2001
Xunhong Chen
ABSTRACT: Numerical modeling techniques are used to analyze streamflow depletion for stream-aquifer systems with baseflow. The analyses calculated two flow components generated by a pumping well located at a given distance from a river that is hydraulically connected to an unconfined aquifer. The two components are induced stream infiltration and reduced baseflow; both contribute to total streamflow depletion. Simulation results suggest that the induced infiltration, the volume of water discharged from the stream to the aquifer, has a shorter term impact on streamflow, while the reduced baseflow curves show a longer term effect. The peak impacts of the two hydrologic processes on streamflow occur separately. The separate analysis helps in understanding the hydrologic interactions between stream and aquifer. Practically, it provides useful information about contaminant transport from stream to aquifer when water quality is a concern, and for areas where water quantity is an issue, the separate analysis offers additional information to the development of water resource management plan. [source]


The Water Poverty Index: Development and application at the community scale

NATURAL RESOURCES FORUM, Issue 3 2003
C.A. Sullivan
The article details the development and uses of the water poverty index (WPI). The index was developed as a holistic tool to measure water stress at the household and community levels, designed to aid national decision makers, at community and central government level, as well as donor agencies, to determine priority needs for interventions in the water sector. The index combines into a single number a cluster of data directly and indirectly relevant to water stress. Subcomponents of the index include measures of: access to water; water quantity, quality and variability; water uses (domestic, food, productive purposes); capacity for water management; and environmental aspects. The WPI methodology was developed through pilot projects in South Africa, Tanzania and Sri Lanka and involved intensive participation and consultation with all stakeholders, including water users, politicians, water sector professionals, aid agency personnel and others. The article discusses approaches for the further implementation of the water poverty index, including the possibilities of acquiring the necessary data through existing national surveys or by establishing interdisciplinary water modules in school curricula. The article argues that the WPI fills the need for a simple, open and transparent tool, one that will appeal to politicians and decision makers, and at the same time can empower poor people to participate in the better targeting of water sector interventions and development budgets in general. [source]