Water Quality Deterioration (water + quality_deterioration)

Distribution by Scientific Domains


Selected Abstracts


Assessing the results of scenarios of climate and land use changes on the hydrology of an Italian catchment: modelling study

HYDROLOGICAL PROCESSES, Issue 19 2010
Daniela R. D'Agostino
Abstract Hydrological models are recognized as valid scientific tools to study water quantity and quality and provide support for the integrated management and planning of water resources at different scales. In common with many catchments in the Mediterranean, the study catchment has many problems such as the increasing gap between water demand and supply, water quality deterioration, scarcity of available data, lack of measurements and specific information. The application of hydrological models to investigate hydrological processes in this type of catchments is of particular relevance for water planning strategies to address the possible impact of climate and land use changes on water resources. The distributed catchment scale model (DiCaSM) was selected to study the impact of climate and land use changes on the hydrological cycle and the water balance components in the Apulia region, southern Italy, specifically in the Candelaro catchment (1780 km2). The results obtained from this investigation proved the ability of DiCaSM to quantify the different components of the catchment water balance and to successfully simulate the stream flows. In addition, the model was run with the climate change scenarios for southern Italy, i.e. reduced winter rainfall by 5,10%, reduced summer rainfall by 15,20%, winter temperature rise by 1·25,1·5 °C and summer temperature rise by 1·5,1·75 °C. The results indicated that by 2050, groundwater recharge in the Candelaro catchment would decrease by 21,31% and stream flows by 16,23%. The model results also showed that the projected durum wheat yield up to 2050 is likely to decrease between 2·2% and 10·4% due to the future reduction in rainfall and increase in temperature. In the current study, the reliability of the DiCaSM was assessed when applied to the Candelaro catchment; those parameters that may cause uncertainty in model output were investigated using a generalized likelihood uncertainty estimation (GLUE) methodology. The results showed that DiCaSM provided a small level of uncertainty and subsequently, a higher confidence level. Copyright © 2010 John Wiley & Sons, Ltd. [source]


The relationships between stocking density and welfare in farmed rainbow trout

JOURNAL OF FISH BIOLOGY, Issue 3 2002
T. Ellis
There is increasing public, governmental and commercial interest in the welfare of intensively farmed fish and stocking density has been highlighted as an area of particular concern. Here we draw scientific attention and debate to this emerging research field by reviewing the evidence for effects of density on rainbow trout. Although no explicit reference to ,welfare' has been made, there are 43 studies which have examined the effects of density on production and physiological parameters of rainbow trout. Increasing stocking density does not appear to cause prolonged crowding stress in rainbow trout. However, commonly reported effects of increasing density are reductions in food conversion efficiency, nutritional condition and growth, and an increase in fin erosion. Such changes are indicative of a reduced welfare status,although the magnitude of the effects has tended to be dependent upon study-specific conditions. Systematic observations on large scale commercial farms are therefore required, rather than extrapolation of these mainly small-scale experimental findings. There is dispute as to the cause of the observed effects of increasing density, with water quality deterioration and/or an increase in aggressive behaviour being variously proposed. Both causes can theoretically generate the observed effects of increasing density, and the relative contribution of the two causes may depend upon the specific conditions. However, documentation of the relationship between density and the effects of aggressive behaviour at relevant commercial densities is lacking. Consequently only inferential evidence exists that aggressive behaviour generates the observed effects of increasing density, whereas there is direct experimental evidence that water quality degradation is responsible. Nevertheless, there are contradictory recommendations in the literature for key water quality parameters to ensure adequate welfare status. The potential for welfare to be detrimentally affected by non-aggressive behavioural interactions (abrasion, collision, obstruction) and low densities (due to excessive aggressive behaviour and a poor feeding response) have been largely overlooked. Legislation directly limiting stocking density is likely to be unworkable, and a more practical option might be to prescribe acceptable levels of water quality, health, nutritional condition and behavioural indicators. [source]


Seasonal and diel changes of dissolved oxygen in a hypertrophic prairie lake

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2005
Richard D. Robarts
Abstract Humboldt Lake, a hypertrophic prairie lake typical of many found on the Great Plains of North America, is usually ice-covered from early November to about mid-May. The lake is an important recreational fishery, now mainly stocked with walleye. It has a high potential risk of experiencing fish kills because of the very large cyanobacterial blooms that develop in it, the high rates of algal and bacterial production and the high concentrations of ammonia (NH3 -N) and dissolved organic matter. Following the collapse of cyanobacterial blooms, shallow prairie lakes are known to undergo periods of anoxia that can lead to summer fish kills. In some of the lakes, anoxia forms during the long period of ice cover, causing winter fish kills. Two years of seasonal and diel data (total phosphorus, dissolved oxygen (DO), NH3 -N and chlorophyll- a concentrations, and bacterial production) were analysed in this study to assess why significant fish kills did not occur during this period or during the , 30 years of records from Saskatchewan Environment. Humboldt Lake did not become anaerobic, either following the collapse of the cyanobacterial bloom or under ice cover, indicating that the oxygen (O2) influx (strong mixing) and production processes were greater than the microbial and chemical O2 demands, both over seasonal and diel time scales. Several published risk threshold criteria to predict the probability of summer and/or winter fish kills were applied in this study. The threshold criteria of maximum summer chlorophyll and maximum winter NH3 -N concentrations indicated that a summer fish kill was unlikely to occur in this hypertrophic prairie lake, provided its water quality remained similar to that during this study. Similarly, the threshold criteria of initial DO storage before ice cover and the rate of O2 depletion under ice cover also indicated a winter fish kill was unlikely. However, recent development in the watershed might have resulted in significant water quality deterioration and the winter fish kill that occurred in 2005. [source]


Initial influence of fertilizer nitrogen types on water quality

AQUACULTURE RESEARCH, Issue 7 2010
Charles C Mischke
Abstract Using different sources of nitrogen as fertilizers in nursery ponds may affect water quality and plankton responses. We evaluated water quality variables and plankton population responses when using different nitrogen sources for catfish nursery pond fertilization. We compared calcium nitrate (12% N), sodium nitrite (20% N), ammonium chloride (26% N), ammonium nitrate (34% N) and urea (45% N) in 190-L microcosms at equimolar nitrogen application rates. Sodium nitrite-fertilized microcosms had higher nitrite and nitrate levels during the first week; no other differences in the water quality were detected among fertilizer types (P>0.05). No differences in green algae, diatoms or cyanobacteria were detected among treatments; desirable zooplankton for catfish culture was increased in urea-fertilized microcosms. Based on these results, any form of nitrogen used for pond fertilization should perform similarly without causing substantial water quality deterioration. Ammonium nitrate and urea contain a higher percentage of nitrogen, requiring less volume to achieve dosing levels. If both urea and ammonium nitrate are available, we recommend using the one with the least cost per unit of nitrogen. If both types of fertilizer have an equal cost per unit of nitrogen, we recommend using urea because of the potential advantage of increasing desirable zooplankton concentrations. [source]