Water Mixtures (water + mixture)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


Properties of 2,2,2-Trifluoroethanol/Water Mixtures: Acidity, Basicity, and Dipolarity

HELVETICA CHIMICA ACTA, Issue 2 2005
Paz Sevilla, Sierra
In this report, we focus our attention on the characterization of 2,2,2-trifluoroethanol(TFE)/H2O mixtures and describe their intrinsic parameters; i.e., solvent acidity (SA), solvent basicity (SB), and solvent dipolarity/polarizability (SPP), by the probe/homomorph-couple method for a range of mixtures from 0,100% (v/v) TFE. Variation of these parameters is not linear and has a singular and unpredictable behavior depending on the precise composition of the mixture. Based on these parameters, we describe the TFE-induced changes in some physical properties; i.e., viscosity (,), partial molar volume (V,), density (,), dielectric constant (,), vapor pressure (pv), and spectroscopic properties; i.e., NMR chemical shifts (,(1H)) of TFE Me group for all molar fractions studied. In addition, by means of CD studies, we report that formation of the secondary structure, as percentage of helical content, ,, of a polypeptide, poly(L -lysine), in several TFE/H2O mixtures is adequately described by these mixture parameters. SA, SB, and SPP of TFE/H2O mixtures provide an excellent tool for the interpretation of formation and stability of intramolecular H-bonds, and, thus, of secondary structures in polypeptides. [source]


Influence of Decreasing Solvent Polarity (1,4-Dioxane/Water Mixtures) on the Acid,Base and Copper(II)-Binding Properties of Guanosine 5,-Diphosphate,

HELVETICA CHIMICA ACTA, Issue 3 2005
Emanuela
The acidity constants of twofold protonated guanosine 5,-diphosphate, H2(GDP),, and the stability constants of the [Cu(H;GDP)] and [Cu(GDP)], complexes were determined in H2O as well as in 30 or 50% (v/v) 1,4-dioxane/H2O by potentiometric pH titrations (25°; I=0.1M, NaNO3). The results showed that in H2O one of the two protons of H2(GDP), is located mainly at the N(7) site and the other one at the terminal , -phosphate group. In contrast, for 50% 1,4-dioxane/H2O solutions, a micro acidity-constant evaluation evidenced that ca. 75% of the H2(GDP), species have both protons phosphate-bound, because the basicity of pyridine-type N sites decreases with decreasing solvent polarity whereas the one of phosphate groups increases. In the [Cu(H;GDP)] complex, the proton and the metal ion are in all three solvents overwhelmingly phosphate-bound, and the release of this proton is inhibited by decreasing polarity of the solvent. Based on previously determined straight-line plots of log,Kvs. pK (where R represents a non-interacting residue in simple diphosphate monoesters ROP(O,)(O)OP(O)(O,)2, RDP3,), which were now extended to mixed solvents (based on analogies), it is concluded that, in all three solvents, the [Cu(GDP)], complex is more stable than expected based on the basicity of the diphosphate residue. This increased stability is attributed to macrochelate formation of the phosphate-coordinated Cu2+ with N(7) of the guanine residue. The formation degree of this macrochelate amounts in aqueous solution to ca. 75% (being thus higher than that of the Cu2+ complex of adenosine 5,-diphosphate) and in 50% (v/v) 1,4-dioxane/H2O to ca. 60%, i.e., the formation degree of the macrochelate is only relatively little affected by the change in solvent, though it needs to be emphasized that the overall stability of the [Cu(GDP)], complex increases with decreasing solvent polarity. By including previously studied systems in the considerations, the biological implications are shortly discussed, and it is concluded that Nature has here a tool to alter the structure of complexes by shifting them on a protein surface from a polar to an apolar region and vice versa. [source]


The Aerobic Oxidative Cleavage of Lignin to Produce Hydroxyaromatic Benzaldehydes and Carboxylic Acids via Metal/Bromide Catalysts in Acetic Acid/Water Mixtures

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2009
Walt Partenheimer
Abstract Roughly 30% of all woody plants is composed of lignin. Five different lignin samples, from wood and bagasse, were oxidized in air with a cobalt/manganese/zirconium/bromide (Co/Mn/Zr/Br) catalyst in acetic acid as a function of time, temperature, pressure, and lignin and catalyst concentrations. 18 products were identified via gas chromatography-mass spectrometry (GC/MS). The most valuable products from lignin were 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzaldehyde (vanillin), 4-hydroxy-3-methoxybenzoic acid (vanillic acid), 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) and 4-hydroxy-3,5-dimethoxybenzoic acid (syringic acid). 10.9,wt% of the lignin was converted to the aromatic products. By the use of model compounds we demonstrate that 1) the presence of the phenolic functionality on an aromatic ring does inhibit the rate of reaction but that the alkyl group on the ring still does oxidize to the carboxylic acid, 2) that the masking of phenol by acetylation occurs at a reasonable rate in acetic acid, 3) that the alkyl group of the masked phenol does very readily oxidize, 4) that an acetic anhydride/acetic acid mixture is a good oxidation solvent and 5) that a two-step acetylation/oxidation to the carboxylic acid is feasible. [source]


One-Pot Synthesis of Biomimetic Shell Cross-Linked Micelles and Nanocages by ATRP in Alcohol/Water Mixtures,

ANGEWANDTE CHEMIE, Issue 20 2010
Shinji Sugihara Dr.
Ein ABC-Triblockcopolymer wurde für die Eintopfsynthese von Micellen mit vernetzter Schale (SCL) verwendet (siehe Schema; BIEE=1,2-Bis(2-iodethoxy)ethan). Bei deren Dialyse werden die PMPC-Ketten des Kerns solvatisiert. Bei nicht zu starker Vernetzung wandern die Ketten durch die Schale, um zusammen mit den PEO-Ketten die Micellencorona zu konstituieren. [source]


ChemInform Abstract: Ozonolysis in Solvent/Water Mixtures: Direct Conversion of Alkenes to Aldehydes and Ketones.

CHEMINFORM, Issue 43 2008
Charles E. Schiaffo
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Polycaprolactone- b -Poly(ethylene oxide) Biocompatible Micelles as Drug Delivery Nanocarriers: Dynamic Light Scattering and Fluorescence Experiments

MACROMOLECULAR SYMPOSIA, Issue 1 2005
Cristiano Giacomelli
Abstract Summary: Dynamic light scattering (DLS) and fluorescence experiments were carried out to study PCL44 - b -PEO114 biocompatible micelles used as nanocarriers in drug delivery. Micelles prepared by a simple procedure (THF removal under nitrogen flow) exhibited a narrow size distribution with an average diameter of 100 nm. For micelles containing a hydrophobic model compound (pyrene) within the PCL core, a smaller average micellar size of 80 nm was observed, with a simultaneous broadening in the size distribution profile. In parallel to DLS results, fluorescence experiments showed evidence of pyrene encapsulation, and that the onset of the micellization process occurs at approximately 10/90 (v/v) THF/water mixtures in the case of PCL44 - b -PEO114 polymer. [source]


ELECTRICAL CONDUCTIVITY OF HEATED CORNSTARCH,WATER MIXTURES

JOURNAL OF FOOD PROCESS ENGINEERING, Issue 6 2009
EDUARDO MORALES-SANCHEZ
ABSTRACT Electrical conductivity (EC) of cornstarch,water mixtures in the range 10:90 to 70:30 (w/w) was studied as a function of temperature. An external resistive heating system equipped with an electronic device capable of monitoring EC in real time was used and EC of the mixtures was measured while heated at a rate of 5C/min. Results showed that EC went through four different temperature-dependent stages (A, B, C and D). Stage B (41C to 64C) showed a lower EC increasing rate when compared with that of Stage A (from 25C to 41C), probably as a result of starch granule swelling. In Stage C (64C to 78C), EC behavior was found to be dependent on water content. When water content was more than 50%, the value for EC increased. On the other side, EC decreased when water content was less than 50%. Stage C was related to starch gelatinization, according to differential scanning calorimetry results obtained in this study. In Stage D (78C to 92C), a steady increase in EC was observed, probably as a result of the total solubilization of starch in water. It was concluded that Stage C in EC graphs corresponded to cornstarch gelatinization, so it might be possible to use EC monitoring as an alternative technique to measure cornstarch thermal characteristics with different contents of water. PRACTICAL APPLICATIONS Electrical conductivity can be used as an adequate technique to monitor gelatinization, granule swelling and phase change of starch as a function of temperature in corn starch,water mixtures with a wide range of water contents. With this technique, it is also possible to calculate important thermal parameters, such as the beginning and end of the gelatinization and the energy activation for the heating process of cornstarch. This can lead to a better design and control of important industrial corn processes such as alkaline cooking. [source]


ChemInform Abstract: Phosphine-Free Cross-Coupling Reaction of Halopyridines with Arylboronic Acids in an Ionic Liquid: Water Mixture.

CHEMINFORM, Issue 3 2009
Bingwei Xin
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


A Laser Flash Photolysis Study of Curcumin in Dioxane,Water Mixtures,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2001
F. Ortica
ABSTRACT Curcumin [bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] was studied by means of UV,VIS absorption spectroscopy and nanosecond laser flash photolysis in 1,4-dioxane,water mixtures in a series of dioxane,water volume ratios. The transient characteristics were found to be dependent on the amount of water. In pure dioxane the triplet state of the molecule in its enolic form was detected (,max= 720 nm, ,= 3.2 ,s), whereas upon water addition, the diketo form was found to prevail, because of the perturbation of intramolecular H-bonded structure. This led to hydrogen abstraction from dioxane by curcumin triplet state and the formation of the corresponding ketyl radical (,max= 490 nm, ,, 10 ,s). Laser flash photolysis measurements, carried out in solvents of different polarity and proticity (benzene, cyclohexane and various alcohols), allowed the transient assignments to be confirmed, supporting our interpretation. [source]


Chlorophyll a Self-assembly in Polar Solvent,Water Mixtures ,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2000
Radka Vladkova
ABSTRACT The conversion of chlorophyll a (Chl a) monomers into large aggregates in six polar solvents upon addition of water has been studied by means of absorption, fluorescence spectroscopy and fluorescence lifetime measurements for the purpose of elucidating the various environmental factors promoting Chl a self-assembly and determining the type of its organization. Two empirical solvent parameter scales were used for quantitative characterization of the different solvation properties of the solvents and their mixtures with water. The mole fractions of water f1/2 giving rise to the midpoint values of the relative fluorescence quantum yield were determined for each solvent, and then various solvent,water mixture parameters for the f1/2 values were compared. On the basis of their comparison, it is concluded that the hydrogen-bonding ability and the dipole,dipole interactions (function of the dielectric constant) of the solvent,water mixtures are those that promote Chl a self-assembly. The influence of the different nature of the nonaqueous solvents on the Chl aggregation is manifested by both the different water contents required to induce Chl monomer , aggregate transition and the formation of two types of aggregates at the completion of the transition: species absorbing at 740,760 nm (in methanol, ethanol, acetonitrile, acetone) and at 667,670 nm (in pyridine and tetrahydrofuran). It is concluded that the type of Chl organization depends on the coordination ability and the polarizability (function of the index of refraction) of the organic solvent. The ordering of the solvents with respect to the f1/2 values,methanol < ethanol < acetonitrile < acetone < pyridine < tetrahydrofuran,yielded a typical lyotropic (Hofmeister) series. On the basis of this solvent ordering and the disparate effects of the two groups of solvents on the Chl a aggregate organization, it is pointed out that the mechanism of Chl a self-assembly in aqueous media can be considered a manifestation of the Hofmeister effect, as displayed in the lipid-phase behavior (Koynova et al., Eur. J. Biophys. 25, 261,274, 1997). It relates to the solvent ability to modify the bulk structure and to distribute unevenly between the Chl,water interface and bulk liquid. [source]


Divanadium(V) and Trapped Valence Linear Tetravanadium(IV,V,V,IV) Complexes

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 35 2009
Anindita Sarkar
Abstract In an acetonitrile/water mixture, reactions of the N,N,-bis(diacetyl)hydrazine (H2diah), bis(acetylacetonato)oxidovanadium(IV) [VO(acac)2] and monodentate N -coordinating heterocycles (hc) in a 1:2:2 mol ratio provide yellow divanadium(V) complexes of formula [(hc)O2V(,-diah)VO2(hc)] (1, hc = imidazole; 2, hc = pyrazole; 3, hc = 3,5-dimethyl pyrazole). On the other hand, in the same solvent mixture reactions of the same reagents in a 1:4:2 mol ratio produce green linear tetravanadium(IV,V,V,IV) complexes of formula [(acac)2OV(,-O)VO(hc)(,-diah)(hc)OV(,-O)VO(acac)2] (4, hc = imidazole; 5, hc = pyrazole; 6, hc = 3,5-dimethyl pyrazole). The complexes 1,6 have been characterized by elemental analysis, magnetic susceptibility, and various spectroscopic and electrochemical measurements. The X-ray crystal structures of 1, 3 and 6 have been determined. In all three structures, the diazine ligand diah2, is in trans configuration. Metal-centred bond parameters are consistent with the localized electronic structure of the two trans -bent {OV(,-O)VO}3+ cores present in 6. The pentavalent metal centres in 1, 3 and 6 are in a distorted trigonal-bipyramidal N2O3 coordination environment, while the terminal tetravalent metal centres in 6 are in a distorted octahedral O6 coordination sphere. The eight-line EPR spectra of the tetravanadium species (4,6) in dimethyl sulfoxide at ambient temperature indicate the rare valence localized electronic structure in the fluid phase. All the complexes are redox active and display metal-centred electron transfer processes in dimethyl sulfoxide solution. A reduction within ,0.78 to ,0.94 V (vs. Ag/AgCl) is observed for the divanadium(V) species 1,3, while a reduction and an oxidation are observed in the potential ranges ,0.82 to ,0.90 V and 0.96 to 1.12 V (vs. Ag/AgCl), respectively, for the tetravanadium species 4,6. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Photochemical attachment of polymers on planar surfaces with a covalently anchored monolayer of a novel naphthyl ketone photochemical radical generator

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2004
K. Dayananda
Abstract A monolayer of covalently anchored, novel, binaphthyl ketone is used as a surface-confined photochemical radical generator (PRG) for anchoring a variety of polymers to silicon surfaces. The precursor PRG is synthesized by the application of a facile and novel method for the oxidation of sterically hindered benzylic hydrocarbons to carbonyl compounds. Oxidation was carried out with a stoichiometric amount of potassium peroxydisulfate, in the presence of a catalytic amount of copper sulfate in an acetonitrile/water mixture. The PRG synthesized is characterized by 1H NMR, UV, and Fourier transform infrared (FTIR). The covalently attached monolayers are characterized by X-ray photoelectron spectroscopy, ellipsometry, and water contact angle measurements. The method developed is applicable to the preparation of a monolayer of a variety of polymers on a wide range of substrates carrying surface hydroxyl groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5413,5423, 2004 [source]


Structures and Solvatochromic Phosphorescence of Dicationic Terpyridyl,Platinum(II) Complexes with Foldable Oligo(ortho -phenyleneethynylene) Bridging Ligands

CHEMISTRY - A EUROPEAN JOURNAL, Issue 31 2008
Ming-Xin Zhu
Abstract A series of binuclear organoplatinum(II) complexes, [(tBu3tpy)Pt(CC1,2-C6H4)nCCPt(tBu3tpy)][ClO4]2 (1,7, n=1, 2, 3, 4, 5, 6, 8; tBu3tpy=4,4,,4,,-tri- tert -butyl-2,2,:6,,2,,-terpyridine) with foldable oligo(ortho -phenyleneethynylene) linkers were prepared and characterized by spectroscopic methods and/or X-ray crystallographic analyses. In the crystal structures of 3,2.5,CH3OH, 5,CH3CN, and 6,4,CH3CN, each of the bridging ortho -phenyleneethynylene ligands has a partially folded conformation. In aerated water/acetonitrile mixtures with water percentages larger than 40,%, the emission of complexes 3,7 are red-shifted and enhanced when compared to those recorded in acetonitrile. The red-shift in emission energy and enhanced emission intensity can be attributed to the inter- and/or intramolecular interactions induced by the addition of water to solutions of the platinum(II) complexes in acetonitrile. Data from dynamic light scattering and transmission electron microscopy studies revealed that these binuclear platinum(II) complexes aggregated into nanosized particles in acetonitrile/water mixtures. Hydrophobic folding of the ortho -phenyleneethynylene linkers in acetonitrile/water mixtures is postulated. [source]


Enhancement of pool boiling heat transfer in water and ethanol/water mixtures (effect of surface-active agent)

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2004
Toshiaki Inoue
Abstract The surface tension of alcohol/water mixtures has been measured over the whole fraction range and then it has been measured when a surface-active agent was added into the mixtures. The effect of the concentration of alcohol and the surface- active agent on surface tension was experimentally clarified, in order to gain base data related to enhancement of the heat transfer coefficient in the mixtures and water. The experiment was also carried out to enhance the boiling heat transfer coefficients of water and alcohol/water mixtures on a horizontal heated fine wire at a pressure of 0.1 MPa by adding a surface-active agent into the tested liquid. The results show, the coefficients were enhanced in lower alcohol concentration (C , 0.5) and low heat flux range which occur just after the onset of boiling. It was also found that the enhancement effect by the surfactant disappears in concentrations over 1000 ppm. Finally, we demonstrated that the surface tension remarkably affects the heat transfer coefficients in nucleate pool boiling. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(4): 229,244, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20010 [source]


Sulfonated N -Heterocyclic Carbenes for Pd-Catalyzed Sonogashira and Suzuki,Miyaura Coupling in Aqueous Solvents

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2010
Sutapa Roy
Abstract The reactions of the N,N, -diarylimidazolium and N,N, -diarylimidazolinium salts with chlorosulfonic acid result in the formation of the respective disulfonated N -heterocyclic carbene (NHC) precursors in reasonable yields (46,77%). Water-soluble palladium catalyst complexes, in situ obtained from the respective sulfonated imidazolinium salt, sodium tetrachloropalladate (Na2PdCl4) and potassium hydroxide (KOH) in water, were successfully applied in the copper-free Sonogashira coupling reaction in isopropyl alcohol/water mixtures using 0.2,mol% catalyst loading. The preformed (disulfonatedNHC)PdCl(cinnamyl) complex was used in aqueous Suzuki,Miyaura reactions at 0.1,mol% catalyst loading. The coupling protocol reported here is very useful for Sonogashira reactions of N - and S -heterocyclic aryl bromides and chlorides with aryl- and alkylacetylenes. [source]


Pervaporation separation of sodium alginate/chitosan polyelectrolyte complex composite membranes for the separation of water/alcohol mixtures: Characterization of the permeation behavior with molecular modeling techniques

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2007
Sang-Gyun Kim
Abstract Polyelectrolyte complex (PEC) membranes were prepared by the complexation of protonated chitosan with sodium alginate doped on a porous, polysulfone-supporting membrane. The pervaporation characteristics of the membranes were investigated with various alcohol/water mixtures. The physicochemical properties of the permeant molecules and polyion complex membranes were determined with molecular modeling methods, and the data from these methods were used to explain the permeation of water and alcohol molecules through the PEC membranes. The experimental results showed that the prepared PEC membranes had an excellent pervaporation performance in most aqueous alcohol solutions and that the selectivity and permeability of the membranes depended on the molecular size, polarity, and hydrophilicity of the permeant alcohols. However, the aqueous methanol solutions showed a permeation behavior different from that of the other alcohol solutions. Methanol permeated the prepared PEC membranes more easily than water even though water molecules have stronger polarity and are smaller than methanol molecules. The experimental results are discussed from the point of view of the physical properties of the permeant molecules and the membranes in the permeation state. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2634,2641, 2007 [source]


Pervaporation of tertiary butanol/water mixtures through chitosan membranes cross-linked with toluylene diisocyanate,

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 12 2005
Smitha Biduru
Abstract Membranes made from 84% deacetylated chitosan biopolymer were cross-linked by a novel method using 2,4-toluylene diisocyanate (TDI) and tested for the separation of t -butanol/water mixtures by pervaporation. The unmodified and cross-linked membranes were characterized by Fourier transform infra red (FTIR) spectroscopy, X-ray diffraction (XRD) studies and sorption studies in order to understand the polymer,liquid interactions and separation mechanisms. Thermal stability was analyzed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) while tensile strength measurement was carried out to assess mechanical strength. The membrane appears to have good potential for breaking the aqueous azeotrope of 88.2 wt% t -butanol by giving a high selectivity of 620 and substantial water flux (0.38 kg m,2 hr,1). The effects of operating parameters such as feed composition, membrane thickness and permeate pressure on membrane performance were evaluated. Copyright © 2005 Society of Chemical Industry [source]


Solvolysis of Some Arenediazonium Salts in Binary EtOH/H2O Mixtures under Acidic Conditions

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 17 2003
Román Pazo-Llorente
Abstract We have determined the product distribution, the rate constants for dediazoniation product formation, and the solvolytic rate constants for 2-, 3-, and 4-methylbenzenediazonium ions (2-, 3-, and 4-MBD, respectively) loss in acidic ethanol/water mixtures over the whole composition range by a combination of spectrophotometric (UV/Vis) and high performance liquid chromatography (HPLC) measurements. The observed rate constants (kobs) for substrate loss are equal to those for product formation, and they remain essentially constant (2-MBD) with changing solvent composition but increase by a factor of ,2 (4MBD) on going from water to 100% EtOH. Up to four dediazoniation products , cresols (ArOH), chlorotoluene (ArCl), methylphenetole (ArOEt), and toluene (ArH) , were detected, depending on the solvent composition; the major dediazoniation products were the ArOH and ArOEt derivatives. The product selectivity (S) of the reaction towards nucleophiles is low and essentially constant with changing solvent composition, and good linear correlations between log kobs and YCl (solvent ionizing power) were observed for the three ArN2+ ions. All data are consistent with the rate-determining formation of an aryl cation, which reacts immediately with available nucleophiles. The data suggest that the distribution of neutral and anionic nucleophiles in the neighborhood of the ground state arenediazonium ion remains essentially unchanged upon dediazoniation, the observed product distribution reflecting the concentrations of nucleophiles in their immediate environment (i.e., in the first solvation shells of the arenediazonium ions). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


New Insights on Near-Infrared Emitters Based on Er-quinolinolate Complexes: Synthesis, Characterization, Structural, and Photophysical Properties,

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2007
F. Artizzu
Abstract Erbium quinolinolates, commonly assumed to be mononuclear species with octahedral co-ordination geometry, have been proposed as promising materials for photonic devices but difficulties in obtaining well defined products have so far limited their use. We report here the conditions to obtain in high yields three different kinds of pure neutral erbium quinolinolates by mixing an erbium salt with 8-quinolinol (HQ) and 5,7-dihalo-8-quinolinol (H5,7XQ: X,=,Cl and Br): i),the trinuclear complex Er3Q9 (1) which is obtained with HQ deprotonated by NH3 in water or ethanol/water mixtures; ii),the already known dimeric complexes based on the unit [Er(5,7XQ)3(H2O)2] [X,=,Cl (2) and Br (3)]; iii) the mononuclear [Er(5,7XQ)2(H5,7XQ)2Cl] [X,=,Cl (4) and Br (5)] complexes, obtained in organic solvents without base addition, where the ion results coordinated to four ligands, two deprotonated chelating, and two as zwitterionic monodentate oxygen donors. These results represent a further progress with respect to a recent reinvestigation on this reaction, which has shown that obtaining pure and anhydrous octahedral ErQ3, the expected reaction product, is virtually impossible, but failed in the isolation of 1 and of the neutral tetrakis species based on H5,7XQ ligands. Structural data provide a detailed description of the molecules and of their packing which involves short contacts between quinoxaline ligands, due to ,,, interactions. Electronic and vibrational studies allow to select the fingerprints to distinguish the different products and to identify the presence of water. The structure/property relationship furnishes a satisfactory interpretation of the photo-physical properties. Experimental evidence confirms that the most important quenchers for the erbium emission are the coordinated water molecules and shows that the ligand emission is significantly affected by the ,,, interactions. [source]


Enhancement of pool boiling heat transfer in water and ethanol/water mixtures (effect of surface-active agent)

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2004
Toshiaki Inoue
Abstract The surface tension of alcohol/water mixtures has been measured over the whole fraction range and then it has been measured when a surface-active agent was added into the mixtures. The effect of the concentration of alcohol and the surface- active agent on surface tension was experimentally clarified, in order to gain base data related to enhancement of the heat transfer coefficient in the mixtures and water. The experiment was also carried out to enhance the boiling heat transfer coefficients of water and alcohol/water mixtures on a horizontal heated fine wire at a pressure of 0.1 MPa by adding a surface-active agent into the tested liquid. The results show, the coefficients were enhanced in lower alcohol concentration (C , 0.5) and low heat flux range which occur just after the onset of boiling. It was also found that the enhancement effect by the surfactant disappears in concentrations over 1000 ppm. Finally, we demonstrated that the surface tension remarkably affects the heat transfer coefficients in nucleate pool boiling. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(4): 229,244, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20010 [source]


Bilinear model for the prediction of drug solubility in ethanol/water mixtures

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2005
Stephen G. Machatha
Abstract A new bilinear function that accounts for the disparity between the log-linear and parabolic models for cosolvent solubilization is presented, where ethanol was used as the model cosolvent. This accounts for both the initial and terminal slopes in the ethanol/water solubility profiles of semi-polar solutes. The proposed model has only two fitted parameters ,A and ,B, which represent the initial and terminal asymptotes in the solubility profiles. The bilinear function can also model the ethanol/water solubility profile more accurately than the log-linear model and a general parabolic model. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:2731,2735, 2005 [source]


Tartaric Acid Starch Ether: A Novel Biopolymer-Based Polyelectrolyte

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 16 2003
Carsten Grote
Abstract New tartaric acid starch ethers have been synthesized applying starch sources of different amylose content. The reactions were carried out heterogeneously in ethanol/water mixtures with cis -disodiumepoxysuccinate as etherifying reagent leading to products of a degree of substitution (DS) up to 0.3. The molecular structure of the new starch ethers was evaluated by elemental analysis, FTIR and 13C NMR spectroscopy. Preliminary studies using a convenient titration method indicate a high binding capacity for Ca2+ ions which is dependent on the starch source and DS. Tartaric acid starch ethers. [source]


Simulation and validation of ethanol removal from water in an adsorption packed bed: Isotherm and mass transfer parameter determination in batch studies

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2010
R. A. Jones
Abstract Preferential adsorption of ethanol from ethanol/water mixtures in batch equilibrium and kinetic experiments were carried out on a commercially available activated carbon adsorbent Filtrasorb 600 (F-600). A model based on finite difference method was developed and employed to determine the mass transfer parameters and equilibrium behaviour for the adsorption of ethanol from simple batch systems. The estimates of the adsorption isotherm along with the mass transfer parameters were used to simulate the transient performance that could be expected in a packed bed under various operating conditions (feed flow rate, feed concentration, and particle size). The applicability of the simulation results were found to be a good match with experimental packed bed experiments over the entire range of operating conditions tested. La cinétique et l'isotherme d'adsorption de l'éthanol des mélanges eau/éthanol lors d'expériences en discontinus ont été déterminées pour un adsorbant au charbon activé disponible dans le commerce, le Filtrasorb 600 (F-600). Un modèle basé sur la méthode des différences finies a été développé et utilisé pour déterminer les paramètres de transfert de matière et étudier le comportement à l'équilibre pour l'adsorption préférentielle de l'éthanol en systèmes discontinus. Les estimations de l'isotherme d'adsorption aussi bien que les paramètres de transfert de matière ont été utilisées pour simuler la performance en régime transitoire d'un lit d'adsorbant sous diverses conditions de fonctionnement (taux d'écoulement du mélange, concentration du mélange et la taille des particules). L'applicabilité des résultats de simulation s'est avérée tout à fait concordante avec les données expérimentales sous toutes les conditions de fonctionnement examinées. [source]


Mass Transfer in Blood Oxygenators Using Blood Analogue Fluids

BIOTECHNOLOGY PROGRESS, Issue 4 2002
S. Ranil Wickramasinghe
Mass transfer correlations for hollow fiber blood oxygenators have been determined experimentally using Newtonian and non-Newtonian blood analogue fluids. The Newtonian fluids consisted of deionized water and glycerol/water mixtures. The non-Newtonian fluids were prepared by adding small amounts of xanthan gum to the Newtonian blood analogue fluids. The rheological behavior of the non-Newtonian blood analogue fluids was modeled using the power law. The diffusion of oxygen into and out of the Newtonian and non-Newtonian blood analogue fluids has been studied. The liquid stream flowed outside and across bundles of woven hollow fibers, while the gas stream flowed inside the fibers. [source]


Equine laminitis: cryotherapy reduces the severity of the acute lesion

EQUINE VETERINARY JOURNAL, Issue 3 2004
A. W. Van Eps
Summary Reasons for performing study: The hypometabolic and vasoconstrictive effects of cryotherapy could prevent the development of laminitis. Objectives: To use distal limb cryotherapy to prevent laminitis induced by alimentary carbohydrate overload. Methods: Laminitis was induced in 6 Standardbred horses that had one front limb continuously cooled in an ice/water mixture. Lameness evaluation, blinded lamellar histological grading and analysis for lamellar matrix metalloproteinase-2 (MMP-2) mRNA expression were used to evaluate the severity of laminitis. Results: Cryotherapy was well tolerated and effective in cooling the feet. In each horse no lameness was observed in the treated limbs. Laminitis histology scores in the treated limbs were significantly less than those of the corresponding untreated forelimbs (P<0.05). Laminitis histology scores in the treated limbs were also significantly less than those of the untreated limbs (fore- and hind) as a group (P<0.05). Expression of MMP-2 mRNA in the iced feet was significantly (P<0.05) less than that detected in the untreated feet. Conclusions: Cryotherapy, when applied to one foot, markedly reduced the severity of acute laminitis in this study. We propose that vasoconstriction (preventing delivery of haematogenous trigger factors) and hypometabolism (reduction in lamellar MMP activity) were the primary therapeutic mechanisms. Potential relevance: Although further research is needed, we suggest cryotherapy as a potentially effective prophylactic strategy in horses at risk of developing acute laminitis. [source]


ZSM-11 membranes: Characterization and pervaporation performance

AICHE JOURNAL, Issue 2 2002
Shiguang Li
High-quality boron and aluminium-substituted ZSM-11 membranes were prepared on porous tubular supports to separate alcohols from water by pervaporation. The C1,C3 alcohols were preferentially separated from aqueous solutions through the B-ZSM-11 membrane, and the maximum flux was 1.7 kg/m2·h for a 5 wt.% methanol/water mixture. The alcohol fluxes decreased as the carbon number increased. The methanol/water separation selectivity decreased with pervaporation temperature, but other alcohol/water selectivities increased. All selectivities increased with decreasing alcohol feed concentration. In a range of 1 to 50 wt. % alcohol, the separation selectivities at 333 K for the C1,C3 linear alcohols were higher than vapor/liquid equilibrium selectivities. The highest selectivities observed for methanol/water, ethanol/water, 1-propanol/water, and 2-propanol/water were 28, 97, 34, and 26, respectively, at 1 wt. % alcohol feed concentrations. The separation selectivities were based on both preferential adsorption of alcohols and differences in diffusion rates. [source]


Synthesis of PEDOT Nanoparticles and Vesicles by Dispersion Polymerization in Alcoholic Media

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 17 2006
Muhammad Mumtaz
Abstract Summary: The synthesis of PEDOT nanoparticles and vesicles by dispersion polymerization in a methanol/water mixture (3/2, v/v) is reported, using either ammonium persulfate or iron(III) p -toluenesulfonate as oxidants and , -EDOT-PEO as a reactive stabilizer. The influence of the oxidant as well as the , -EDOT-PEO molar mass and concentration on the core-shell particle morphology and conductivity properties have been investigated. PEDOT particles with conductivities up to 1.5,×,10,2 S,·,cm,1 have been obtained in high yield. TEM image of PEDOT vesicles prepared using PEO-based stabilizers of 25,000 g,·,mol,1 in water/methanol mixture (2:3 v/v) at room temperature using ammonium persulfate as an oxidant. [source]


The Green Oat Story: Possible Mechanisms of Green Color Formation in Oat Products during Cooking

JOURNAL OF FOOD SCIENCE, Issue 6 2009
D.C. Doehlert
ABSTRACT:, Consumers occasionally report greenish colors generated in their oat products when cooking in tap water. Here we have investigated pH and ferrous (Fe2+) ion as possible mechanisms for this color change. Steel-cut oat groats can turn brown-green color when cooked in alkaline conditions (pHs 9 to 12). Extraction of this color with methanol, and high-pressure liquid chromatography indicated a direct association of this color with the phenolic acid or avenanthramide content of the oat. The presence of 50 mM NaHCO3 in water will cause oat/water mixtures to turn alkaline when cooked as CO2 is driven off, generating OH, ion. Although tap water rarely, if ever, contains so much bicarbonate, bicarbonate is used as a leavening agent in baking applications. Industrial interests using baking soda or alkaline conditions during oat processing should be aware of possible off color generation. We have also found that as little as 10 ppm Fe2+ will turn oat products gray-green when cooked. The aleurone stained darker than the starchy endosperm. Other divalent cations, such as Ca2+ or Mg2+ had no effect on cooked oat color. As much as 50 ppm Fe2+ may be found in freshly pumped well water, but Fe2+ reacts quickly with oxygen and precipitates as Fe(OH)3. Thus, some freshly pumped well water may turn oats green when cooked, but if the water is left under atmospheric conditions for several hours, no discoloration will appear in the cooked oats. [source]


Simple Determination of Segment Numbers for Complex Polymer-Solvent Systems

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 2 2007
S. Machefer
Abstract A theoretical analysis was made to show that segment numbers for complex polymers can be determined by interpreting pVT data in terms of an appropriate segment-based equation of state (EOS). Typically, experiments at high pressures have to be performed to obtain these data. In this study, pVT-derived properties, such as compressibility and speed of sound, together with isobaric specific volume measurements were used as an alternative data source. Experiments were carried out for polyol/water mixtures of different compositions. Taking account of the polymorphism of water, segment numbers were obtained by a numerical regression analysis. Mixture viscosities were calculated using an approved segment-based mixing rule and were in good agreement with experimental data over the temperature range of interest, indicating the validity of the determined segment numbers. [source]


Analysis of 51 persistent organic pollutants in soil by means of ultrasonic solvent extraction and stir bar sorptive extraction GC-MS

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 20 2008
Marta Martínez-Parreño
Abstract A novel method based on ultrasonic solvent extraction and stir bar sorptive extraction (SBSE) for the analysis of 51 persistent organic pollutants including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenylethers (PBDEs) in soil samples was developed. The different parameters that affect both the extraction of analytes from the soil samples, such as solvent selection, solvent volume, mass of soil, and extraction time, and the partitioning from the solvent/water mixture to the PDMS were studied. The final selected conditions consisted of the extraction of 1 g of soil with 15 mL methanol by sonication for 30 min. The methanol extract was mixed with 85 mL of Milli-Q water and extracted by means of SBSE for 14 h at 900 rpm. The stir bars were analyzed by thermal desorption-GC-mass spectometry (TD-GC-MS). The effects of the matrix on the recovery of the various pollutants under the developed method were studied using two soils with very different physicochemical properties. Method sensitivity, linearity, repeatability, and reproducibility were also studied. Validation and accuracy of the method were conducted by analyzing two commercial certified reference materials (CRMs). The main advantage of this method resides in the fact that a small amount of a nontoxic solvent (methanol) is needed for the extraction of only 1 g of solid sample allowing LODs ranging from 0.01 to 2.0 ,g/kg. Repeatability and reproducibility variations were lower than 20% for all investigated compounds. Results of the CRMs verify the high accuracy of this method. [source]