Home About us Contact | |||
Water Maze Training (water_maze + training)
Selected AbstractsRapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze trainingEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003Carmen Sandi Abstract The impact was examined of exposing rats to two life experiences of a very different nature (stress and learning) on synaptic structures in hippocampal area CA3. Rats were subjected to either (i) chronic restraint stress for 21 days, and/or (ii) spatial training in a Morris water maze. At the behavioural level, restraint stress induced an impairment of acquisition of the spatial response. Moreover, restraint stress and water maze training had contrasting impacts on CA3 synaptic morphometry. Chronic stress induced a loss of simple asymmetric synapses [those with an unperforated postsynaptic density (PSD)], whilst water maze learning reversed this effect, promoting a rapid recovery of stress-induced synaptic loss within 2,3 days following stress. In addition, in unstressed animals a correlation was found between learning efficiency and the density of synapses with an unperforated PSD: the better the performance in the water maze, the lower the synaptic density. Water maze training increased the number of perforated synapses (those with a segmented PSD) in CA3, both in stressed and, more notably, in unstressed rats. The distinct effects of stress and learning on CA3 synapses reported here provide a neuroanatomical basis for the reported divergent effects of these experiences on hippocampal synaptic activity, i.e. stress as a suppressor and learning as a promoter of synaptic plasticity. [source] Influence of predator stress on the consolidation versus retrieval of long-term spatial memory and hippocampal spinogenesisHIPPOCAMPUS, Issue 7 2006David M. Diamond Abstract We have studied the influence of predator stress (30 min of cat exposure) on long-term (24 h) spatial memory and the density of spines in basilar dendrites of CA1 neurons. Predator stress occurred either immediately before water maze training (Stress Pre-Training) or before the 24 h memory test (Stress Pre-Retrieval). The Control (nonstress) group exhibited excellent long-term spatial memory and a robust increase in the density of stubby, but not mushroom, shaped spines. The Stress Pre-Training group had impaired long-term memory and did not exhibit any changes in spine density. The Stress Pre-Retrieval group was also impaired in long-term memory performance, but this group exhibited an increase in the density of stubby, but not mushroom, shaped spines, which was indistinguishable from the control group. These findings indicate that: (1) A single day of water maze training under control conditions produced intact long-term memory and an increase in the density of stubby spines in CA1; (2) Stress before training interfered with the consolidation of information into long-term memory and suppressed the training-induced increase in spine density; and (3) Stress immediately before the 24 h memory test trial impaired the retrieval of the stored memory, but did not reverse the training-induced increase in CA1 spine density. Overall, this work provides evidence of structural plasticity in dendrites of CA1 neurons which may be involved in the consolidation process, and how spinogenesis and memory are modulated by stress. © 2006 Wiley-Liss, Inc. [source] |