Water Limitation (water + limitation)

Distribution by Scientific Domains


Selected Abstracts


RELATION BETWEEN VEGETATION CHANGES, CLIMATE VARIABLES AND LAND-USE POLICY IN SHAANXI PROVINCE, CHINA

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 4 2007
MADELENE OSTWALD
ABSTRACT Shaanxi Province in China has been exposed to climate variability and dramatic land-use policies. The aim here is to examine vegetation changes in this area on a regional scale from 2000 to 2004 in relation to land-use changes and climate traits. The data in this assessment include remote sensing information from moderate-resolution imaging spectro-radiometer normalized difference vegetation index from 2000 to 2004, and climate data (precipitation and temperature) from 1956 to 2000. The results show an increase in vegetation production from 2000 to 2004, particularly in the north, which cannot be explained solely by climate impacts. Since the vegetation in the north is more dependent on climate variation than the other parts of Shaanxi due to more serious water limitation, the results suggest that the large-scale land-use policy implemented over the last decade, with a focus on northern Shaanxi, is possibly having an impact on the overall vegetation. [source]


Water availability controls microbial temperature responses in frozen soil CO2 production

GLOBAL CHANGE BIOLOGY, Issue 11 2009
MATS G. ÖQUIST
Abstract Soil processes in high-latitude regions during winter are important contributors to global carbon circulation, but our understanding of the mechanisms controlling these processes is poor and observed temperature response coefficients of CO2 production in frozen soils deviate markedly from thermodynamically predicted responses (sometimes by several orders of magnitude). We investigated the temperature response of CO2 production in 23 unfrozen and frozen surface soil samples from various types of boreal forests and peatland ecosystems and also measured changes in water content in them after freezing. We demonstrate that deviations in temperature responses at subzero temperatures primarily emanates from water deficiency caused by freezing of the soil water, and that the amount of unfrozen water is mainly determined by the quality of the soil organic matter, which is linked to the vegetation cover. Factoring out the contribution of water limitation to the CO2 temperature responses yields response coefficients that agree well with expectations based on thermodynamic theory concerning biochemical temperature responses. This partitioning between a pure temperature response and the effect of water availability on the response of soil CO2 production at low temperatures is crucial for a thorough understanding of low-temperature soil processes and for accurate predictions of C-balances in northern terrestrial ecosystems. [source]


Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils

GLOBAL CHANGE BIOLOGY, Issue 10 2008
ALWYN SOWERBY
Abstract Current predictions of climate change include altered rainfall patterns throughout Europe, continental USA and areas such as the Amazon. The effect of this on soil carbon efflux remains unclear although several modelling studies have highlighted the potential importance of drought for carbon storage. To test the importance of drought, and more importantly repeated drought year-on-year, we used automated retractable curtains to exclude rain and produce repeated summer drought in three heathlands at varying moisture conditions. This included a hydric system limited by water-excess (in the UK) and two mesic systems with seasonal water limitation in Denmark (DK) and the Netherlands (NL). The experimental rainfall reductions were set to reflect single year droughts observed in the last decade with exclusion of rain for 2,3 months of the year resulting in a 20,26% reduction in annual rainfall and 23,38% reduction in mean soil moisture during the drought period. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods) was also observed at all three sites, along with a reduction in the maximum water-holding capacity attained. Three hypotheses are discussed which may have contributed to this lack of recovery in soil moisture: hydrophobicity of soil organic matter, increased water use by plants and increased cracking of the soil. The responses of soil respiration to this change in soil moisture varied among the sites: decreased rates were observed at the water-limited NL and DK sites whilst they increased at the UK site. Reduced sensitivity of soil respiration to soil temperature was observed at soil moisture contents above 55% at the UK site and below 20% and 13% at the NL and DK sites, respectively. Soil respiration rates recovered to predrought levels in the NL and DK sites during the winter re-wetting period that indicates any change in soil C storage due to changes in soil C efflux may be short lived in these mesic systems. In contrast, in the hydric UK site after 2 years of drought treatment, the persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels. These findings suggest that carbon-rich soils with high organic matter content may act as a significant source of CO2 to the atmosphere following repeated summer drought. Nonrecovery of soil moisture and a persistent increase in soil respiration may be the primary mechanism underlying the reported substantial losses of soil carbon from UK organic soils over the last 20 years. These findings indicate that the water status of an ecosystem will be a critical factor to consider in determining the impact of drought on the soil carbon fluxes and storage. [source]


Rainfall effects on rare annual plants

JOURNAL OF ECOLOGY, Issue 4 2008
Jonathan M. Levine
Summary 1Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood. 2We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future. 3Species showed 9 to 100-fold between-year variation in plant density over the 5,12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants. 4Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect. 5Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response experiments indicated that variation in germination has the same potential as the seeds produced per germinant to drive variation in population growth rates, but only the former was clearly related to rainfall. 6Synthesis. Our work suggests that future changes in the timing and temperatures associated with the first major rains, acting through germination, may more strongly affect population persistence than changes in season-long rainfall. [source]


Relations of sugar composition and ,13C in phloem sap to growth and physiological performance of Eucalyptus globulus (Labill)

PLANT CELL & ENVIRONMENT, Issue 8 2010
ANDREW MERCHANT
ABSTRACT We characterized differences in carbon isotopic content (,13C) and sugar concentrations in phloem exudates from Eucalyptus globulus (Labill) plantations across a rainfall gradient in south-western Australia. Phloem sap ,13C and sugar concentrations varied with season and annual rainfall. Annual bole growth was negatively related to phloem sap ,13C during summer, suggesting a water limitation, yet was positively related in winter. We conclude that when water is abundant, variations in carboxylation rates become significant to overall growth. Concentrations of sucrose in phloem sap varied across sites by up to 600 mm, and raffinose by 300 mm. These compounds play significant roles in maintaining osmotic balance and facilitating carbon movement into the phloem, and their relative abundances contribute strongly to overall ,13C of phloem sap. Taken together, the ,13C and concentrations of specific sugars in phloem sap provide significant insights to functions supporting growth at the tree, site and landscape scale. [source]


Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response

PLANT CELL & ENVIRONMENT, Issue 9 2007
DOMINIQUE RUMEAU
ABSTRACT Besides major photosynthetic complexes of oxygenic photosynthesis, new electron carriers have been identified in thylakoid membranes of higher plant chloroplasts. These minor components, located in the stroma lamellae, include a plastidial NAD(P)H dehydrogenase (NDH) complex and a plastid terminal plastoquinone oxidase (PTOX). The NDH complex, by reducing plastoquinones (PQs), participates in one of the two electron transfer pathways operating around photosystem I (PSI), the other likely involving a still uncharacterized ferredoxin-plastoquinone reductase (FQR) and the newly discovered PGR5. The existence of a complex network of mechanisms regulating expression and activity of the NDH complex, and the presence of higher amounts of NDH complex and PTOX in response to environmental stress conditions the phenotype of mutants, indicate that these components likely play a role in the acclimation of photosynthesis to changing environmental conditions. Based on recently published data, we propose that the NDH-dependent cyclic pathway around PSI participates to the ATP supply in conditions of high ATP demand (such as high temperature or water limitation) and together with PTOX regulates cyclic electron transfer activity by tuning the redox state of intersystem electron carriers. In response to severe stress conditions, PTOX associated to the NDH and/or the PGR5 pathway may also limit electron pressure on PSI acceptor and prevent PSI photoinhibition. [source]


Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes

PLANT CELL & ENVIRONMENT, Issue 5 2007
MOHSEN MOHAMMADI
ABSTRACT We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced ,little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed. [source]


Use of decreasing foliar carbon isotope discrimination during water limitation as a carbon tracer to study whole plant carbon allocation

PLANT CELL & ENVIRONMENT, Issue 5 2002
S. K. Arndt
Abstract Foliar carbon isotope discrimination (,) of C3 plants decreases in water-deficit situations as discrimination by the photosynthetic primary carboxylation reaction decreases. This diminished , in leaves under water deficit can be used as a tracer to study whole plant carbon allocation patterns. Carbon isotope composition (,13C value) of leaf hot water extracts or leaf tissue sap represents a short-term integral of leaf carbon isotope discrimination and thus represents the ,13C value of source carbon that may be distributed within a plant in water-deficit situations. By plotting the ,13C values of source carbon against the ,13C values of sink tissues, such as roots or stems, it is possible to assess carbon allocation to and incorporation into sink organs in relation to already present biomass. This natural abundance labelling method has been tested in three independent experiments, a one-year field study with the fruit tree species Ziziphus mauritiana and peach (Prunus persica), a medium-term drought stress experiment with Ziziphus rotundifolia trees in the glasshouse, and a short-term drought stress experiment with soybean (Glycine max). The data show that the natural abundance labelling method can be applied to qualitatively assess carbon allocation in drought-stressed plants. Although it is not possible to estimate exact fluxes of assimilated carbon during water deficit the method represents an easy to use tool to study integrated plant adaptations to drought stress. In addition, it is a less laborious method that can be applied in field studies as well as in controlled experiments, with plants from any developmental stage. [source]


A Comparison of the Soil Water, Nutrient Status, and Litterfall Characteristics of Tropical Heath and Mixed-Dipterocarp Forest Sites in Brunei,

BIOTROPICA, Issue 1 2000
Jonathan A. Moran
ABSTRACT Two of the main hypotheses to explain the distribution and special characteristics of tropical heath forest are nutrient and water limitation. A study was undertaken to investigate both factors on two sites under tropical heath forest (Badas Forest Reserve) and mixed-dipterocarp forest (Andulau Forest Reserve) in Brunei. Soil water potentials were monitored at depths of 20, 50, and 90 cm over wet and dry periods for five months at each site. The results showed the mixed-dipterocarp forest site to be drier at 50 cm depth compared to the tropical heath forest site. There was no significant difference in water potentials between sites at 20 or 90 cm. Nutrient concentrations in the soil solution were monitored at the same depths over a seven-month period at the same sites. A 12-month litterfall study was also undertaken to monitor nutrient returns from the canopy at each site. The results of both studies suggest that the tropical heath forest site is poorer in nitrogen, but richer in calcium, than the mixed-dipterocarp forest site. The results for phosphorus are less clear, but do not suggest that its limitation is a significant factor at the tropical heath forest site compared to the mixed-dipterocarp forest site. Phosphorus and magnesium concentrations in the soil solution showed a strong positive correlation with sliding 30-day rainfall totals at both sites. [source]


Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth

GLOBAL CHANGE BIOLOGY, Issue 6 2006
MARK E. KUBISKE
Abstract We analyzed growth data from model aspen (Populus tremuloides Michx.) forest ecosystems grown in elevated atmospheric carbon dioxide ([CO2]; 518 ,L L,1) and ozone concentrations ([O3]; 1.5 × background of 30,40 nL L,1 during daylight hours) for 7 years using free-air CO2 enrichment technology to determine how interannual variability in present-day climate might affect growth responses to either gas. We also tested whether growth effects of those gasses were sustained over time. Elevated [CO2] increased tree heights, diameters, and main stem volumes by 11%, 16%, and 20%, respectively, whereas elevated ozone [O3] decreased them by 11%, 8%, and 29%, respectively. Responses similar to these were found for stand volume and basal area. There were no growth responses to the combination of elevated [CO2+O3]. The elevated [CO2] growth stimulation was found to be decreasing, but relative growth rates varied considerably from year to year. Neither the variation in annual relative growth rates nor the apparent decline in CO2 growth response could be explained in terms of nitrogen or water limitations. Instead, growth responses to elevated [CO2] and [O3] interacted strongly with present-day interannual variability in climatic conditions. The amount of photosynthetically active radiation and temperature during specific times of the year coinciding with growth phenology explained 20,63% of the annual variation in growth response to elevated [CO2] and [O3]. Years with higher photosynthetic photon flux (PPF) during the month of July resulted in more positive growth responses to elevated [CO2] and more negative growth responses to elevated [O3]. Mean daily temperatures during the month of October affected growth in a similar fashion the following year. These results indicate that a several-year trend of increasingly cloudy summers and cool autumns were responsible for the decrease in CO2 growth response. [source]


Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years

GLOBAL CHANGE BIOLOGY, Issue 2 2003
Elke Naumburg
Abstract It has been suggested that desert vegetation will show the strongest response to rising atmospheric carbon dioxide due to strong water limitations in these systems that may be ameliorated by both photosynthetic enhancements and reductions in stomatal conductance. Here, we report the long-term effect of 55 Pa atmospheric CO2 on photosynthesis and stomatal conductance for three Mojave Desert shrubs of differing leaf phenology (Ambrosia dumosa,drought-deciduous, Krameria erecta,winter-deciduous, Larrea tridentata,evergreen). The shrubs were growing in an undisturbed ecosystem fumigated using FACE technology and were measured over a four-year period that included both above and below-average precipitation. Daily integrated photosynthesis (Aday) was significantly enhanced by elevated CO2 for all three species, although Krameria erecta showed the greatest enhancements (63% vs. 32% for the other species) enhancements were constant throughout the entire measurement period. Only one species, Larrea tridentata, decreased stomatal conductance by 25,50% in response to elevated CO2, and then only at the onset of the summer dry season and following late summer convective precipitation. Similarly, reductions in the maximum carboxylation rate of Rubisco were limited to Larrea during spring. These results suggest that the elevated CO2 response of desert vegetation is a function of complex interactions between species functional types and prevailing environmental conditions. Elevated CO2 did not extend the active growing season into the summer dry season because of overall negligible stomatal conductance responses that did not result in significant water conservation. Overall, we expect the greatest response of desert vegetation during years with above-average precipitation when the active growing season is not limited to ,2 months and, consequently, the effects of increased photosynthesis can accumulate over a biologically significant time period. [source]


Contrasting soil respiration in young and old-growth ponderosa pine forests

GLOBAL CHANGE BIOLOGY, Issue 12 2002
J. IRVINE
Abstract Three years of fully automated and manual measurements of soil CO2 efflux, soil moisture and temperature were used to explore the diel, seasonal and inter-annual patterns of soil efflux in an old-growth (250-year-old, O site) and recently regenerating (14-year-old, Y site) ponderosa pine forest in central Oregon. The data were used in conjunction with empirical models to determine which variables could be used to predict soil efflux in forests of contrasting ages and disturbance histories. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. Soil CO2 efflux at both sites showed large inter-annual variability that could be attributed to soil moisture availability in the deeper soil horizons (O site) and the quantity of summer rainfall (Y site). Seasonal patterns of soil CO2 efflux at the O site showed a strong positive correlation between diel mean soil CO2 efflux and soil temperature at 64 cm depth whereas diel mean soil efflux at the Y site declined before maximum soil temperature occurred during summer drought. The use of diel mean soil temperature and soil water potential inferred from predawn foliage water potential measurements could account for 80% of the variance of diel mean soil efflux across 3 years at both sites, however, the functional shape of the soil water potential constraint was site-specific. Based on the similarity of the decomposition rates of litter and fine roots between sites, but greater productivity and amount of fine litter detritus available for decomposition at the O site, we would expect higher rates of soil CO2 efflux at the O site. However, annual rates were only higher at the O site in one of the 3 years (597 ± 45 vs. 427 ± 80 g C m,2). Seasonal patterns of soil efflux at both sites showed influences of soil water limitations that were also reflected in patterns of canopy stomatal conductance, suggesting strong linkages between above and below ground processes. [source]


Impact of Water Stress on Maize Grown Off-Season in a Subtropical Environment

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2007
C. M. T. Soler
Abstract During the last decade, the production of off-season maize has increased in several regions of Brazil. Growing maize during this season, with sowing from January through April, imposes several climatic risks that can impact crop yield. This is mainly caused by the high variability of precipitation and the probability of frost during the reproduction phases. High production risks are also partially due to the use of cultivars that are not adapted to the local environmental conditions. The goal of this study was to evaluate crop growth and development and associated yield, yield components and water use efficiency (WUE) for maize hybrids with different maturity ratings grown off-season in a subtropical environment under both rainfed and irrigated conditions. Three experiments were conducted in 2001 and 2002 in Piracicaba, state of São Paulo, Brazil with four hybrids of different maturity duration, AG9010 (very short season), DAS CO32 and Exceler (short season) and DKB 333B (normal season). Leaf area index (LAI), plant height and dry matter were measured approximately every 18 days. Under rainfed conditions, the soil water content in the deeper layers was reduced, suggesting that the extension of the roots into these layers was a response to soil water limitations. On average, WUE varied from 1.45 kg m,3 under rainfed conditions to 1.69 kg m,3 under irrigated conditions during 2001. The average yield varied from 4209 kg ha,1 for the hybrids grown under rainfed conditions to 5594 kg ha,1 under irrigated conditions during 2001. Yield reductions under rainfed conditions were affected by the genotype. For the hybrid DKB 333B with a normal maturity, yield was reduced by 25.6 % while the short maturity hybrid Exceler was the least impacted by soil water limitations with a yield reduction of only 8.4 %. To decrease the risk of yield loss, the application of supplemental irrigation should be considered by local farmers, provided that this practice is not restricted by either economic considerations or the availability of sufficient water resources. [source]