Water Distribution (water + distribution)

Distribution by Scientific Domains

Terms modified by Water Distribution

  • water distribution coefficient
  • water distribution system

  • Selected Abstracts


    Drip Irrigation Frequency: The Effects and Their Interaction with Nitrogen Fertilization on Sandy Soil Water Distribution, Maize Yield and Water Use Efficiency Under Egyptian Conditions

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2008
    S. E. El-Hendawy
    Abstract Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split-split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha,1), and two maize hybrids (three-way cross 310 and single cross 10) as the main-plot, split-plot, and split-split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha,1 was not statistically different from that at 380 kg N ha,1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha,1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha,1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100-grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha,1. In order to improve the WUE and grain yield for drip-irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha,1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated. [source]


    Organization, Management and Delegation in the French Water Industry

    ANNALS OF PUBLIC AND COOPERATIVE ECONOMICS, Issue 4 2001
    Jihad C. Elnaboulsi
    The water industry is largely a natural monopoly. Water distribution and sewerage services are characterized by networks and its natural monopoly derives from the established local networks of drinking water and sewers: they are capital intensive with sunk costs and increasing returns to scale. In France, local communities have a local requirement of providing public services under optimum conditions in terms of techniques and cost-effectiveness, and subject to respect different kind of standards in terms of water quality and level of services. They are responsible for producing and distributing drinking water, and collecting and treating wastewater. Furthermore, the French water utilities are required to be financially self-sufficient. Rate-setting varies across regions and local territories due to a variety of organizational features of services and availability of water resources. The management of these local public services can be public or private: local governments have the right, by the constitution, to delegate water service management to private companies which operate under the oversight of local municipal authorities. Today, nearly 80 per cent of the French population receive private distributed water. Different reasons are responsible for the poor performance and low productivity of most French public water utilities: technical and operational, commercial and financial, human and institutional, and environmental. Thus, many water public utilities have looked for alternative ways to provide water and sanitation services more efficiently, to improve both operational and investment efficiency, and to attract private finance. The purpose of this paper is to present the French organizational system of providing drinking water services, and collecting and treating wastewater services: legal aspects, contracts of delegation, and competition. [source]


    The micro-topography of the wetlands of the Okavango Delta, Botswana

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2005
    T. Gumbricht
    Abstract The surface of the 40 000 km2 Okavango alluvial fan is remarkably smooth, and almost everywhere lies within two to three metres of a perfectly smooth theoretical surface. Deviations from this perfect surface give rise to islands in the Okavango wetlands. This micro-topography was mapped by assigning empirical elevations to remotely sensed vegetation community classes, based on the observation that vegetation is very sensitive to small, local differences in elevation. Even though empirical, the method produces fairly accurate results. The technique allows estimation of depths of inundation and therefore will be applicable even when high resolution radar altimetry becomes available. The micro-topography has arisen as a result of clastic sedimentation in distributary channels, which produces local relief of less than two metres, and more importantly as a result of chemical precipitation in island soils, which produces similar local relief. The micro-topography is, therefore, an expression of the non-random sedimentation taking place on the fan. Volume calculations of islands extracted from the micro-topography, combined with estimates of current sediment in,ux, suggest that the land surface of the wetland may only be a few tens of thousands of years old. Constant switching of water distribution, driven by local aggradation, has distributed sediment widely. Mass balance calculations suggest that over a period of c. 150 000 years all of the fan would at one time or other have been inundated, and thus subject to sedimentation. Coalescing of islands over time results in net aggradation of the fan surface. The amount of vertical aggradation on islands and in channels is restricted by the water depth. Restricted vertical relief, in turn, maximizes the distribution of water, limiting its average depth. Aggradation in the permanent swamps occurs predominantly by clastic sedimentation. Rates of aggradation here are very similar to those in the seasonal swamps, maintaining the overall gradient, possibly because of the operation of a feedback loop between the two. The limited amount of local aggradation arising from both clastic and chemical sedimentation, combined with constant changes in water distribution, has resulted in a near-perfect conical surface over the fan. In addition to providing information on sedimentary processes, the micro-topography has several useful hydrological applications. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Comparison between Nafion® and a Nafion® Zirconium Phosphate Nano-Composite in Fuel Cell Applications

    FUEL CELLS, Issue 3-4 2006
    F. Bauer
    Abstract A comparative investigation of the electrical, mechanical, and chemical behaviour of zirconium phosphate-Nafion® composite membranes and Nafion® by means of ex-situ measurements, as well as with fuel cell operation, reveals a slight reduction of ionic conductivity, a significant improvement of mechanical stability, and increased water retention for the composite materials. The overall efficiency at 130,°C is increased during direct methanol fuel cell (DMFC) operation because the reduction in the ionic conductivity is overcompensated for by the decrease in methanol crossover. With H2 as the fuel, the slight reduction in overall efficiency corresponds to the decrease in ionic conductivity. The dimensional stability of the membrane and the membrane electrode assembly (MEA) is significantly improved for operating temperatures above 100,°C. A model for the microstructure-property relation for PFSA-Zr(HPO4)2,·,n,H2O composite membranes is presented, based on the experimental results from membranes with varying filler contents and distributions, obtained through different synthesis routes. It is aimed at the improvement of water distribution in the membrane upon fuel cell operation. [source]


    SOCIAL CONSTRUCTION OF HYDROPOLITICS: THE GEOGRAPHICAL SCALES OF WATER AND SECURITY IN THE INDUS BASIN,

    GEOGRAPHICAL REVIEW, Issue 4 2007
    Daanish Mustafa
    ABSTRACT. The article identifies important themes and future research directions for analyzing water and conflict dynamics at the subnational scale in the Indus Basin. A historical overview of water development in the Indus Basin suggests that the water-security nexus was always a salient theme in the minds of water developers, even in the nineteenth century. Conflicts over contemporary large-scale water-development projects in the Indian and Pakistani parts of the Indus Basin are reviewed. Engineers' single-minded focus on megaprojects, to the neglect of the wider set of values that societies attach to water resources in the eastern and western Indus Basin are largely to blame for continuing low-grade conflict in the basin. A review of local-level conflicts over water supply and sanitation in Karachi and the distribution of irrigation water in Pakistani Punjab illustrates the critical role of governance and differential social power relations in accentuating conflict. The article argues against neo-Malthusian assumptions about the inevitability of conflict over water because of its future absolute scarcity. Instead, the article seeks to demonstrate that, despite evidence suggesting that international armed conflict over water does not exist, the potential for political instability over domestic water distribution and development issues is real. The question of whether conflict at the subnational scale will culminate in violence will depend on how water-resources institutions in the basin behave. [source]


    Micro-CT scanning analysis for inner structure of porous media

    HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2007
    Zhang Yang
    Abstract A micro-CT scanner was employed to investigate inner characteristics of porous media, and particular cakes were taken as samples. By obtaining the inner pore structure and inner structure reconstruction, porosity and its variation in the samples, water distribution in pores, and other inner characteristics were determined and explored. When the sample was dried after immersion in water, the solid frame shrank, some pores became larger and the porosity increased, while the sample not immersed in water did not change much after being dried. The experiments indicate that micro-CT scanning is an effective technology to study the inner structure of porous materials with pores larger than tens of microns and also can be used to explore some important transport performance. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 208, 214, 2007; Published online in Wiley InterScience (www.interscience. wiley.com). DOI 10.1002/htj.20155 Copyright © 2004 Wiley Periodicals, Inc. [source]


    How to model shallow water-table depth variations: the case of the Kervidy-Naizin catchment, France

    HYDROLOGICAL PROCESSES, Issue 4 2005
    Jérôme Molénat
    Abstract The aim of this work is threefold: (1) to identify the main characteristics of water-table variations from observations in the Kervidy-Naizin catchment, a small catchment located in western France; (2) to confront these characteristics with the assumptions of the Topmodel concepts; and (3) to analyse how relaxation of the assumptions could improve the simulation of distributed water-table depth. A network of piezometers was installed in the Kervidy-Naizin catchment and the water-table depth was recorded every 15 min in each piezometer from 1997 to 2000. From these observations, the Kervidy-Naizin groundwater appears to be characteristic of shallow groundwaters of catchments underlain by crystalline bedrock, in view of the strong relation between water distribution and topography in the bottom land of the hillslopes. However, from midslope to summit, the water table can attain a depth of many metres, it does not parallel the topographic surface and it remains very responsive to rainfall. In particular, hydraulic gradients vary with time and are not equivalent to the soil surface slope. These characteristics call into question some assumptions that are used to model shallow lateral subsurface flow in saturated conditions. We investigate the performance of three models (Topmodel, a kinematic model and a diffusive model) in simulating the hourly distributed water-table depths along one of the hillslope transects, as well as the hourly stream discharge. For each model, two sets of parameters are identified following a Monte Carlo procedure applied to a simulation period of 2649 h. The performance of each model with each of the two parameter sets is evaluated over a test period of 2158 h. All three models, and hence their underlying assumptions, appear to reproduce adequately the stream discharge variations and water-table depths in bottom lands at the foot of the hillslope. To simulate the groundwater depth distribution over the whole hillslope, the steady-state assumption (Topmodel) is quite constraining and leads to unacceptable water-table depths in midslope and summit areas. Once this assumption is relaxed (kinematic model), the water-table simulation is improved. A subsequent relaxation of the hydraulic gradient (diffusive model) further improves water-table simulations in the summit area, while still yielding realistic water-table depths in the bottom land. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Scanning electron microscopic observation of oil/wax/water/surfactant system

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 2 2005
    K. Ikuta
    We observed the internal structure of an oil/wax/water/surfactant system using a scanning electron microscope to investigate the relationship between its hardness and state of wax crystal. The molten wax (hydrogenated jojoba oil, ceresin, polyethylene wax, carnauba wax, or microcrystalline wax) was cast in a home-made spiral mold of aluminum foil for preparing the test specimen for SEM observation. In hydrogenated jojoba oil a fine frame-like crystal structure, the so-called ,card-house structure,' was observed but not in other waxes. The mixture of hydrogenated jojoba oil and water showed a few small droplets deposited on the roundish wax frame-like structure. On the other hand, waxes other than hydrogenated jojoba oil did not change their internal structure when they were mixed with water. This result suggested that hydrogenated jojoba oil showed uniquely high affinity for water. In the system of oil, water, surfactant, and various kinds of waxes, their crystal structure, hardness, and the shape of dispersed water particles were remarkably changed with the combination of waxes. In the system with ceresin and carnauba wax, the hardness measured by a card-tension meter was high, and the internal crystal structure was fine and amorphous. The water particle in the ceresin and carnauba wax system had a smaller diameter than that in the system containing hydrogenated jojoba oil. The system containing hydrogenated jojoba oil showed a card house-like wax crystal structure without high hardness. It was considered that the wax crystal structure played an important role in providing hardness and in contributing to the water distribution in the oil/wax/water/surfactant system. [source]


    Drip Irrigation Frequency: The Effects and Their Interaction with Nitrogen Fertilization on Sandy Soil Water Distribution, Maize Yield and Water Use Efficiency Under Egyptian Conditions

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 3 2008
    S. E. El-Hendawy
    Abstract Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split-split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha,1), and two maize hybrids (three-way cross 310 and single cross 10) as the main-plot, split-plot, and split-split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha,1 was not statistically different from that at 380 kg N ha,1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha,1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha,1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100-grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha,1. In order to improve the WUE and grain yield for drip-irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha,1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated. [source]


    Utilization of oligo- and polysaccharides at microgram-per-litre levels in freshwater by Flavobacterium johnsoniae

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2010
    E.L.W. Sack
    Abstract Aims:, To obtain a bacterial strain that can be used to quantify biodegradable polysaccharides at concentrations of a few micrograms per litre in freshwater. Methods and Results:,Flavobacterium johnsoniae strain A3 was isolated from tap water supplemented with laminarin, pectin or amylopectin at 100 ,g C l,1 and river Rhine water. The organism utilized 14 of 23 oligo- and polysaccharides, and 1 of 9 monosaccharides, but none of the sugar acids, sugar alcohols, carboxylic acids or aromatic acids tested at 10 ,g C l,1. Amino acids promoted growth of strain A3, but not in coculture with assimilable organic carbon (AOC) test strain Pseudomonas fluorescens P17, which utilized these compounds more rapidly than strain A3. Compounds released by strain P17 and AOC test strain Spirillum sp. NOX grown on acetate promoted the growth of strain A3 at Nmax values of , 2 × 105 CFU ml,1 of strain P17 and , 5 × 105 CFU ml,1 of strain NOX. Significant growth of strain A3 was observed in surface water and in tap water in the presence of strain P17 (Nmax P17 < 2 × 105 CFU ml,1). Conclusions:, Strain A3 utilizes oligo- and polysaccharides at microgram-per-litre levels. In surface water and in tap water, the organism was able to utilize compounds that were not utilized by strain P17. These compounds may include oligo- and/or polysaccharides. Significance and Impact of the Study:, Phytoplanktonic and bacterial polysaccharides can constitute an important biodegradable fraction of natural organic matter in water and may promote growth of heterotrophic bacteria during water treatment and drinking water distribution. Strain A3 can be used to quantify a group of compounds that includes oligo- and polysaccharides at microgram-per-litre levels in freshwater. [source]


    Skin hydration: a review on its molecular mechanisms

    JOURNAL OF COSMETIC DERMATOLOGY, Issue 2 2007
    Sylvie Verdier-Sévrain MD
    Summary Water is absolutely essential for the normal functioning of the skin and especially its outer layer, the stratum corneum (SC). Loss of water from the skin must be carefully regulated, a function dependent on the complex nature of the SC. The retention of water in the SC is dependent on two major components: (1) the presence of natural hygroscopic agents within the corneocytes (collectively referred to as natural moisturizing factor) and (2) the SC intercellular lipids orderly arranged to form a barrier to transepidermal water loss (TEWL). The water content of the SC is necessary for proper SC maturation and skin desquamation. Increased TEWL impairs enzymatic functions required for normal desquamation resulting in the visible appearance of dry, flaky skin. There have been recent discoveries regarding the complex mechanisms of skin hydration. In particular, it has been discovered that glycerol, a well-known cosmetic ingredient, exists in the SC as a natural endogenous humectant. Hyaluronan, which has been regarded mainly as dermal component, is found in the epidermis and is important for maintaining normal SC structure and epidermal barrier function. More importantly, the discovery of the existence of the water-transporting protein aquaporin-3 in the viable epidermis and the presence of tight junction structures at the junction between the stratum granulosum and SC have brought new insights into the mechanisms of skin water distribution and barrier function. [source]


    EFFECTS OF THERMAL AND ELECTROTHERMAL PRETREATMENTS ON HOT AIR DRYING RATE OF VEGETABLE TISSUE

    JOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2000
    WEI-CHI WANG
    ABSTRACT Cylindrical samples of carrot, potato and yam were dried in a hot-air dehydrator after preheating to 50C or 80C by three different heating methods (conventional, microwave and ohmic). The results showed that enhancement of drying rate increased with pretreatment temperature. Ohmic pretreatment increased the drying rate more than conventional and microwave heating. Desorption isotherms showed that in the low aw range, desorption data of preheated and raw materials were similar. However, the isotherms of preheated samples shifted when aw was high, which indicated that thermal pretreatments altered the structure, and apparently, the water distribution within these materials. For all samples, ohmic pretreatment showed stronger influences on isotherms than microwave heating, while the pretreatment effect of conventional heating was only observed for potato tissue. [source]


    In situ observation of water distribution and behaviour in a polymer electrolyte fuel cell by synchrotron X-ray imaging

    JOURNAL OF SYNCHROTRON RADIATION, Issue 4 2008
    Taihei Mukaide
    In situ visualization of the distribution and behaviour of water in a polymer electrolyte fuel cell during power generation has been demonstrated using a synchrotron X-ray imaging technique. Images were recorded using a CCD detector combined with a scintillator (Gd2O2S:Tb) and relay lens system, which were placed at 2.0,m or 2.5,m from the fuel cell. The images were measured continuously before and during power generation, and data on cell performance was recorded. The change of water distribution during power generation was obtained from X-ray images normalized with the initial state of the fuel cell. Compared with other techniques for visualizing the water in fuel cells, this technique enables the water distribution and behaviour in the fuel cell to be visualized during power generation with high spatial resolution. In particular, the effects of the specifications of the gas diffusion layer on the cathode side of the fuel cell on the distribution of water were efficiently identified. This is a very powerful technique for investigating the mechanism of water flow within the fuel cell and the relationship between water behaviour and cell performance. [source]


    PACIFIC NORTHWEST REGIONAL ASSESSMIENT: THE IMPACTS OF CLIMATE VARIABILITY AND CLIMATE CHANGE ON THE WATER RESOURCES OF TEE COLUMBIA RWER BASIN,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2000
    Edward L. Miles
    ABSTRACT: The Pacific Northwest (PNW) regional assessment is an integrated examination of the consequences of natural climate variability and projected future climate change for the natural and human systems of the region. The assessment currently focuses on four sectors: hydrology/water resources, forests and forestry, aquatic ecosystems, and coastal activities. The assessment begins by identifying and elucidating the natural patterns of climate vanability in the PNW on interannual to decadal timescales. The pathways through which these climate variations are manifested and the resultant impacts on the natural and human systems of the region are investigated. Knowledge of these pathways allows an analysis of the potential impacts of future climate change, as defined by IPCC climate change scenarios. In this paper, we examine the sensitivity, adaptability and vulnerability of hydrology and water resources to climate variability and change. We focus on the Columbia River Basin, which covers approximately 75 percent of the PNW and is the basis for the dominant water resources system of the PNW. The water resources system of the Columbia River is sensitive to climate variability, especially with respect to drought. Management inertia and the lack of a centralized authority coordinating all uses of the resource impede adaptability to drought and optimization of water distribution. Climate change projections suggest exacerbated conditions of conflict between users as a result of low summertime streamfiow conditions. An understanding of the patterns and consequences of regional climate variability is crucial to developing an adequate response to future changes in climate. [source]


    Crystal quality and differential crystal-growth behaviour of three proteins crystallized in gel at high hydrostatic pressure

    ACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2005
    A. Kadri
    Pressure is a non-invasive physical parameter that can be used to control and influence protein crystallization. It is also found that protein crystals of superior quality can be produced in gel. Here, a novel crystallization strategy combining hydrostatic pressure and agarose gel is described. Comparative experiments were conducted on hen and turkey egg-white lysozymes and the plant protein thaumatin. Crystals could be produced under up to 75,100,MPa (lysozymes) and 250,MPa (thaumatin). Several pressure-dependent parameters were determined, which included solubility and supersaturation of the proteins, number, size and morphology of the crystals, and the crystallization volume. Exploration of three-dimensional phase diagrams in which pH and pressure varied identified growth conditions where crystals had largest size and best morphology. As a general trend, nucleation and crystal-growth kinetics are altered and nucleation is always enhanced under pressure. Further, solubility of the lysozymes increases with pressure while that of thaumatin decreases. Likewise, changes in crystallization volumes at high and atmospheric pressure are opposite, being positive for the lysozymes and negative for thaumatin. Crystal quality was estimated by analysis of Bragg reflection profiles and X-ray topographs. While the quality of lysozyme crystals deteriorates as pressure increases, that of thaumatin crystals improves, with more homogeneous crystal morphology suggesting that pressure selectively dissociates ill-formed nuclei. Analysis of the thaumatin structure reveals a less hydrated solvent shell around the protein when pressure increases, with ,20% less ordered water molecules in crystals grown at 150,MPa when compared with those grown at atmospheric pressure (0.1,MPa). Noticeably, the altered water distribution is seen in depressurized crystals, indicating that pressure triggers a stable structural alteration on the protein surface while its polypeptide backbone remains essentially unaltered. [source]


    Intermolecular interaction studies of winter flounder antifreeze protein reveal the existence of thermally accessible binding state

    BIOPOLYMERS, Issue 2 2004
    Dat H. Nguyen
    Abstract The physical nature underlying intermolecular interactions between two rod-like winter flounder antifreeze protein (AFP) molecules and their implication for the mechanism of antifreeze function are examined in this work using molecular dynamics simulations, augmented with free energy calculations employing a continuum solvation model. The energetics for different modes of interactions of two AFP molecules is examined in both vacuum and aqueous phases along with the water distribution in the region encapsulated by two antiparallel AFP backbones. The results show that in a vacuum two AFP molecules intrinsically attract each other in the antiparallel fashion, where their complementary charge side chains face each other directly. In the aqueous environment, this attraction is counteracted by both screening and entropic effects. Therefore, two nearly energetically degenerate states, an aggregated state and a dissociated state, result as a new aspect of intermolecular interaction in the paradigm for the mechanism of action of AFP. The relevance of these findings to the mechanism of function of freezing inhibition in the context of our work on Antarctic cod antifreeze glycoprotein (Nguyen et al., Biophysical Journal, 2002, Vol. 82, pp. 2892,2905) is discussed. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source]


    Effects of tidal flat reclamation on sediment quality and hypoxia in Isahaya Bay

    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 6 2006
    Yoshikuni Hodoki
    Abstract 1.Ariake Bay, which is located in western Japan, has a large tidal range (>6 m) and a vast tidal flat (200 km2). In the early 1990s, the government-managed Isahaya Reclamation Project began in the western part of Ariake Bay. A 16-km2 area of tidal flat in the inner part of Isahaya Bay was destroyed through reclamation and separated from the sea by a dyke, which created land and a freshwater reservoir. 2.Since the initiation of the project, fishery yields around Isahaya Bay have dramatically decreased. The objective of this study was to clarify the relationship between the work associated with the Isahaya Reclamation Project and the recent environmental deterioration in Ariake Bay, with references to present sediment thickness and organic matter content, and hypoxic water distributions in Isahaya Bay. 3.The organic matter load from the reservoir has increased since the initiation of the reclamation project and has been associated with a thick layer of fine sediment at the bottom of Isahaya Bay. The thickness of fine sediment and the total organic carbon content were higher in Isahaya Bay than in the freshwater reservoir. 4.Based on measurements in August 2001, hypoxic water spread widely in and around Isahaya Bay; the lowest dissolved oxygen (DO) concentration (0.53 mg L,1) was observed just outside the dyke. An analysis based on a two-layered box model using data obtained in August 2001 showed that the DO consumption rate in the bottom layer was high (0.61 mg O2 L,1 day,1), and that 22,41% of the total organic carbon load needed to induce the hypoxic water was derived from the reclamation area. 5.Our findings strongly suggest that enclosed seas may suffer from eutrophic and hypoxic conditions because of their low seawater-exchange rate. A comprehensive conservation programme and environmental assessment including physical and material transport processes in the system is needed to manage the environment of the enclosed sea. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Anwendungen der Magnetresonanz zur Untersuchung von Wasser-, Temperatur- und Porenverteilung bei lebensmittelverfahrenstechnischen Prozessen

    CHEMIE-INGENIEUR-TECHNIK (CIT), Issue 4 2004
    M. Regier Dr.-Ing.
    Abstract Es werden verschiedene Methoden der kernmagnetischen Resonanz (NMR) und ihrer Anwendung zur Bestimmung von Wasser-, Temperaturverteilungen und Selbstdiffusionskoeffizienten im Verlauf von Prozessen im Bereich der Lebensmittelverfahrenstechnik vorgestellt. Ausgehend von den physikalischen Grundlagen der Magnetresonanz werden verschiedene Anwendungen gezeigt, die das Potenzial besitzen, zum tieferen Verständnis der verfahrenstechnischen Prozesse beizutragen: Beispielhaft wird die Bestimmung von Wasserverteilungen bei der Rehydratation von getrockneten Proben, die Ermittlung von Temperaturverteilungen bei der Mikrowellenerwärmung und von beobachtungszeitabhängigen Selbstdiffusionskoeffizienten bei der Mikrowellen-Vakuumtrocknung gezeigt. Letztere können dazu genutzt werden, um weitere Aussagen über die innere Gewebestruktur wie Tortuosität und Porenradien zu erlangen. Applications of Magnetic Resonance for Investigating Water-, Temperature- and Poredistributions in Food Process Engineering Various methods of nuclear magnetic resonance (NMR) and their application for determinig water- and temperature distributions as well as self diffusion coefficients during food processing operations are presented. Starting from the physical basics of the magnetic resonance, various NMR applications are shown, which may contribute to a more comprehensive understanding of the food processes: Presented examples are the determination of water distributions during the rehydration of dried samples, of temperature distributions during a microwave heating process and of self diffusion coefficients during microwave vacuum drying. These observation time dependent self diffusion coefficients may be used to receive further information about the internal tissue structure, like tortuosity and pore radii. [source]