Home About us Contact | |||
Water Deficiency (water + deficiency)
Selected AbstractsCompensative Effects of Chemical Regulation with Uniconazole on Physiological Damages Caused by Water Deficiency during the Grain Filling Stage of WheatJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2008L. Duan Abstract Chemical regulation using plant growth regulators has proved to be potentially beneficial in water-saving agriculture. This experiment was conducted with winter wheat (Triticum aestivum L. cv. ,Jingdong 6') to study the effect of chemical regulation on alleviation of water deficit stress during the grain filling stage. Uniconazole, a plant growth regulator, was foliar sprayed at 85 % (adequate irrigation) and 60 % (deficit irrigation) field capacity. Results showed that the distribution of 3H-H2O in roots and flag leaf, characteristics of vascular bundle in primary roots and internode below spike, roots activity, transpiration rate and stomatal conductance of flag leaf were negatively affected by deficit irrigation after flowering. Foliar spraying at the early jointing stage with 13.5 gha,1 uniconazole was able to relieve and compensate for the harmful effects of deficit irrigation. Both the area of vascular bundle in primary roots and internode below the ear were increased by uniconazole, while root viability and their ability to absorb and transport water were increased. In the flag leaf, stomatal conductance was reduced to maintain the transpiration rate and water use efficiency (WUE) measured for a single wheat plant was higher. Uniconazole increased WUE by 25.0 % under adequate and 22 % under deficit irrigations. Under adequate irrigations, the 14C-assimilates export rate from flag leaf in 12 h (E12h) was increased by 65 % and 36 % in early and late filling stages, while under deficit irrigations, the E12h of uniconazole-treated plants exceeded that of control plants by 5 % and 34 % respectively. Physiological damages caused by water deficiency during the grain filling stage of wheat was alleviated by foliar spraying with uniconazole. [source] Hydration of Lanthanoid(III) Ions in Aqueous Solution and Crystalline Hydrates Studied by EXAFS Spectroscopy and Crystallography: The Myth of the "Gadolinium Break"CHEMISTRY - A EUROPEAN JOURNAL, Issue 10 2008Ingmar Persson Prof. Abstract The structures of the hydrated lanthanoid(III) ions including lanthanum(III) have been characterized in aqueous solution and in the solid trifluoromethanesulfonate salts by extended X-ray absorption fine structure (EXAFS) spectroscopy. At ambient temperature the water oxygen atoms appear as a tricapped trigonal prism around the lanthanoid(III) ions in the solid nonaaqualanthanoid(III) trifluoromethanesulfonates. Water deficiency in the capping positions for the smallest ions starts at Ho and increases with increasing atomic number in the [Ln(H2O)9,x](CF3SO3)3 compounds with x=0.8 at Lu. The crystal structures of [Ho(H2O)8.91](CF3SO3)3 and [Lu(H2O)8.2](CF3SO3)3 were re-determined by X-ray crystallography at room temperature, and the latter also at 100,K after a phase-transition at about 190,K. The very similar Ln K- and L3 -edge EXAFS spectra of each solid compound and its aqueous solution indicate indistinguishable structures of the hydrated lanthanoid(III) ions in aqueous solution and in the hydrated trifluoromethanesulfonate salt. The mean LnO bond lengths obtained from the EXAFS spectra for the largest ions, La,Nd, agree with estimates from the tabulated ionic radii for ninefold coordination but become shorter than expected starting at samarium. The deviation increases gradually with increasing atomic number, reaches the mean LnO bond length expected for eightfold coordination at Ho, and increases further for the smallest lanthanoid(III) ions, Er,Lu, which have an increasing water deficit. The low-temperature crystal structure of [Lu(H2O)8.2](CF3SO3)3 shows one strongly bound capping water molecule (LuO 2.395(4),Å) and two more distant capping sites corresponding to LuO at 2.56(1),Å, with occupancy factors of 0.58(1) and 0.59(1). There is no indication of a sudden change in hydration number, as proposed in the "gadolinium break" hypothesis. [source] Vegetative growth and development of irrigated forage turnip (Brassica rapa var. rapa)GRASS & FORAGE SCIENCE, Issue 4 2008J. E. Neilsen Abstract Field and greenhouse experiments were conducted to identify visual markers and predictors of changes in the vegetative growth rate of forage turnip (Brassica rapa var. rapa) as a potential tool to improve the timing of inputs of N and irrigation to periods of maximum demand. The onset of root expansion, which was associated with a colour change and the death of cotyledons, was identified as a critical marker for the beginning of the rapid growth of the crop and the accumulation of starch in the storage root but indicators of subsequent changes in vegetative growth rate were not identifiable. The results suggested that management inputs can be more readily targeted to the beginning of the exponential growth phase but targeting of later vegetative growth stages will remain arbitrary. The vegetative growth and development of the crop was also studied to elucidate the process of leaf emergence and senescence (turnover) as they affected both leaf and root yield. The sequential senescence of leaves, which began immediately after cotyledon death, and translocation of carbohydrate to the storage root, coupled with high leaf area index (LAI), probably account for the high growth rates of 220 kg ha,1 day,1 maintained for periods of 10 weeks after the onset of root expansion. High yields can be expected if high LAI is maintained by ensuring that leaf emergence rates are not limited by nutrient or water deficiencies and leaves are protected from insect pests. Forage turnip is particularly robust because new leaf continues to emerge as older and damaged leaves senesce and carbohydrate is stored as starch in the storage root. [source] Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stressPLANT CELL & ENVIRONMENT, Issue 3 2009NESLIHAN Z. ERGEN ABSTRACT A deeper understanding of the drought response and genetic improvement of the cultivated crops for better tolerance requires attention because of the complexity of the drought response syndrome and the loss of genetic diversity during domestication. We initially screened about 200 wild emmer wheat genotypes and then focused on 26 of these lines, which led to the selection of two genotypes with contrasting responses to water deficiency. Six subtractive cDNA libraries were constructed, and over 13 000 expressed sequence tags (ESTs) were sequenced using leaf and root tissues of wild emmer wheat genotypes TR39477 (tolerant) and TTD-22 (sensitive), and modern wheat variety Kiziltan drought stressed for 7 d. Clustering and assembly of ESTs resulted in 2376 unique sequences (1159 without hypothetical proteins and no hits), 75% of which were represented only once. At this level of EST sampling, each tissue shared a very low percentage of transcripts (13,26%). The data obtained indicated that the genotypes shared common elements of drought stress as well as distinctly differential expression patterns that might be illustrative of their contrasting ability to tolerate water deficiencies. The new EST data generated here provide a highly diverse and rich source for gene discovery in wheat and other grasses. [source] Water availability controls microbial temperature responses in frozen soil CO2 productionGLOBAL CHANGE BIOLOGY, Issue 11 2009MATS G. ÖQUIST Abstract Soil processes in high-latitude regions during winter are important contributors to global carbon circulation, but our understanding of the mechanisms controlling these processes is poor and observed temperature response coefficients of CO2 production in frozen soils deviate markedly from thermodynamically predicted responses (sometimes by several orders of magnitude). We investigated the temperature response of CO2 production in 23 unfrozen and frozen surface soil samples from various types of boreal forests and peatland ecosystems and also measured changes in water content in them after freezing. We demonstrate that deviations in temperature responses at subzero temperatures primarily emanates from water deficiency caused by freezing of the soil water, and that the amount of unfrozen water is mainly determined by the quality of the soil organic matter, which is linked to the vegetation cover. Factoring out the contribution of water limitation to the CO2 temperature responses yields response coefficients that agree well with expectations based on thermodynamic theory concerning biochemical temperature responses. This partitioning between a pure temperature response and the effect of water availability on the response of soil CO2 production at low temperatures is crucial for a thorough understanding of low-temperature soil processes and for accurate predictions of C-balances in northern terrestrial ecosystems. [source] Estimating the effectiveness of a rotational irrigation delivery system: A case study from Pakistan,IRRIGATION AND DRAINAGE, Issue 3 2010Noor ul Hassan Zardari warabandi; allocation de l'eau; bassin de l'Indus; Pakistan Abstract In this study, basic principles of the rotational irrigation water delivery system of Pakistan (i.e. the warabandi) and the performance of the warabandi system under current socio-economic conditions have been investigated from a farmers' survey completed from 154 farmers located on five watercourses of the lower Indus River Basin. It is shown that irrigation water allocation based on very limited criteria does not give much incentive to the farmers for improving agricultural income. Also, the survey results suggest that the productivity of limited irrigation water could not be maximized under the warabandi system. We have therefore suggested the basic principles of the warabandi system should be revised by making them suitable for the current socio-economic conditions. We propose that the existence or non-existence of fresh groundwater resources along with other critical variables should be taken into consideration when making canal water allocation decisions. A framework to allow distribution equity and efficiency in water allocations , such as considering the gross area of a tertiary canal, sensitivity of crop growth stage to water shortage, crop value, bias of allocation towards most water use efficient areas, the potential losses from water deficiency, etc. , should be developed as a tool to improve water productivity for Pakistan and for individual farmers. The contribution of groundwater in the farmers' income from agriculture and the economic value of irrigation water have also been estimated. Copyright © 2009 John Wiley & Sons, Ltd. Cette étude analyse les principes de base et la performance du tour d'eau (le warabandi) selon les conditions socio-économiques à partir d'une enquête auprès de 154 agriculteurs situés sur cinq cours d'eau du bassin inférieur de l'Indus. Il est montré que la répartition de l'eau d'irrigation basée sur peu de critères n'incite pas les agriculteurs à améliorer leurs revenus. En outre, les résultats de l'enquête suggèrent que la productivité de l'eau rare ne peut pas être améliorée dans le cadre du système warabandi. Nous avons donc proposé que les principes de base du warabandi soient révisés de façon à les adapter à la situation socio-économique actuelle. Nous proposons que la disponibilité en eaux souterraines ainsi que d'autres variables soient prises en compte dans les décisions d'allocation. Un cadre permettant une allocation de l'eau équitable et efficace , prenant en compte la surface brute commandée par un canal tertiaire, la sensibilité de la croissance des cultures au moment de la pénurie d'eau, la valeur de la récolte, l'orientation vers les zones valorisant le mieux l'eau, les pertes dues au déficit en eau, etc. , devrait être développé comme un outil pour améliorer la productivité de l'eau pour le Pakistan et pour les agriculteurs. La contribution des eaux souterraines au revenu des irrigants et la valeur économique de l'eau ont également été estimées. Copyright © 2009 John Wiley & Sons, Ltd. [source] Evaluation of Drought-Related Traits and Screening Methods at Different Developmental Stages in Spring BarleyJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2008F. Szira Abstract Despite intensive research and breeding efforts, the physiological and quantitative genetic bases of drought tolerance are still poorly understood. The comparison of results obtained from different sources is also complex, because different testing methods may lead to controversial conclusions. This report discusses various drought stress experiments (hydroponics and in soil) in which the plant tolerance was studied at different developmental stages. Tests were performed in the germination, seedling and adult plant stages on the parental lines of five well-known barley-mapping populations. The results suggest that drought tolerance is a stage-specific trait and changes during the life cycle. The effect of drought stress depended not only on the duration and intensity of water deficiency, but also on the developmental phase in which it began. To induce the same type of stress and to obtain comparable tolerance information from the replications, it is recommended that drought stress should be induced at the same growth stage. Correlations between the traits, commonly associated with improved drought resistance (high relative water content under stress, proline accumulation, osmoregulation) with stress tolerance indexes, are also presented, while the advantages and disadvantages of the most frequently used screening methods are discussed. [source] Compensative Effects of Chemical Regulation with Uniconazole on Physiological Damages Caused by Water Deficiency during the Grain Filling Stage of WheatJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2008L. Duan Abstract Chemical regulation using plant growth regulators has proved to be potentially beneficial in water-saving agriculture. This experiment was conducted with winter wheat (Triticum aestivum L. cv. ,Jingdong 6') to study the effect of chemical regulation on alleviation of water deficit stress during the grain filling stage. Uniconazole, a plant growth regulator, was foliar sprayed at 85 % (adequate irrigation) and 60 % (deficit irrigation) field capacity. Results showed that the distribution of 3H-H2O in roots and flag leaf, characteristics of vascular bundle in primary roots and internode below spike, roots activity, transpiration rate and stomatal conductance of flag leaf were negatively affected by deficit irrigation after flowering. Foliar spraying at the early jointing stage with 13.5 gha,1 uniconazole was able to relieve and compensate for the harmful effects of deficit irrigation. Both the area of vascular bundle in primary roots and internode below the ear were increased by uniconazole, while root viability and their ability to absorb and transport water were increased. In the flag leaf, stomatal conductance was reduced to maintain the transpiration rate and water use efficiency (WUE) measured for a single wheat plant was higher. Uniconazole increased WUE by 25.0 % under adequate and 22 % under deficit irrigations. Under adequate irrigations, the 14C-assimilates export rate from flag leaf in 12 h (E12h) was increased by 65 % and 36 % in early and late filling stages, while under deficit irrigations, the E12h of uniconazole-treated plants exceeded that of control plants by 5 % and 34 % respectively. Physiological damages caused by water deficiency during the grain filling stage of wheat was alleviated by foliar spraying with uniconazole. [source] Effects of Land-Use and Land-Cover Change on Evapotranspiration and Water Yield in China During 1900-2000,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2008Mingliang Liu Abstract:, China has experienced a rapid land-use/cover change (LUCC) during the 20th Century, and this process is expected to continue in the future. How LUCC has affected water resources across China, however, remains uncertain due to the complexity of LUCC-water interactions. In this study, we used an integrated Dynamic Land Ecosystem Model (DLEM) in conjunction with spatial data of LUCC to estimate the LUCC effects on the magnitude, spatial and temporal variations of evapotranspiration (ET), runoff, and water yield across China. Through comparisons of DLEM results with other model simulations, field observations, and river discharge data, we found that DLEM model can adequately catch the spatial and seasonal patterns of hydrological processes. Our simulation results demonstrate that LUCC led to substantial changes in ET, runoff, and water yield in most of the China's river basins during the 20th Century. The temporal and spatial patterns varied significantly across China. The largest change occurred during the second half century when almost all of the river basins had a decreasing trend in ET and an increasing trend in water yield and runoff, in contrast to the inclinations of ET and declinations of water yield in major river basins, such as Pearl river basin, Yangtze river basin, and Yellow river basin during the first half century. The increased water yield and runoff indicated alleviated water deficiency in China in the late 20th Century, but the increased peak flow might make the runoff difficult to be held by reservoirs. The continuously increasing ET and decreasing water yield in Continental river basin, Southwest river basin, and Songhua and Liaohe river basin implied regional water deficiency. Our study in China indicates that deforestation averagely increased ET by 138 mm/year but decreased water yield by the same amount and that reforestation averagely decreased ET by 422 mm/year since most of deforested land was converted to paddy land or irrigated cropland. In China, cropland-related land transformation is the dominant anthropogenic force affecting water resources during the 20th Century. On national average, cropland expansion was estimated to increase ET by 182 mm/year while cropland abandonment decreased ET by 379 mm/year. Our simulation results indicate that urban sprawl generally decreased ET and increased water yield. Cropland managements (fertilization and irrigation) significantly increased ET by 98 mm/year. To better understand LUCC effects on China's water resources, it is needed to take into account the interactions of LUCC with other environmental changes such as climate and atmospheric composition. [source] WATER SUPPLY EVALUATION OF TAIWAN'S SILICON VALLEY,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2001Wen-Cheng Huang ABSTRACT: The objective of this paper is to examine a deficit in water for the Hsinchu area, the location of Taiwan's "Silicon Valley." The methods suggested in this paper to diagnose water shortage problems are simple and practical. The results show that Hsinchu is in an area without sufficient water to meet demand for domestic and industrial uses. Until the completion of the Baoshan II Reservoir in 2006, the most feasible options for the Taiwan Water Supply Corporation to offset the water deficiency in Hsinchu City over the next five years are: (a) to obtain water gratuitously from the southern Yungheshan Reservoir; (b) to import additional water at an extra charge from other sources such as the northern Shihmen Reservoir and the agricultural sector; and (c) to conduct a comprehensive water conservation program at the Hsinchu Science-based Industrial Park. [source] Grassland productivity in an alpine environment in response to climate changeAREA, Issue 3 2005Yong Zha Situated in a climatically stressful environment, alpine grassland is sensitive to subtle climate changes in its productivity. We remedy the current deficiency in studying grassland productivity by taking the integrated effect of all relevant factors into consideration. The relative importance of temperature, rainfall and evaporation to the alpine grassland productivity in western China was determined through analysis of their relationship with the normalized difference vegetation index (NDVI) between 1981 and 2000. Climate warming stimulated grassland productivity in the 1980s, but hampered it in the 1990s. Temperature is more important than rainfall to grassland productivity early in the growing season. However, their relative importance is reversed late in the growing season. Monthly summer month rainfall modified by maximum monthly temperature is a good predictor of alpine grassland productivity at 62.0 per cent. However, the best predictor is water deficiency, which is able to improve the estimation accuracy to 78.3 per cent. Hence, the impact of temperature on grassland productivity is better studied indirectly through evaporation. [source] |