Home About us Contact | |||
Water Bodies (water + body)
Kinds of Water Bodies Selected AbstractsConservation of the Biodiversity of Brazil's Inland WatersCONSERVATION BIOLOGY, Issue 3 2005ANGELO A. AGOSTINHO Threatened freshwater species include 44 species of invertebrates (mostly Porifera) and 134 fishes (mostly Cyprinodontiformes, Rivulidae), primarily distributed in south and southeastern Brazil. Reasons for the declines in biodiversity in Brazilian inland waters include pollution and eutrophication, siltation, impoundments and flood control, fisheries, and species introductions. These problems are more conspicuous in the more-developed regions. The majority of protected areas in Brazil have been created for terrestrial fauna and flora, but they also protect significant water bodies and wetlands. As a result, although very poorly documented, these areas are of great importance for aquatic species. A major and pressing challenge is the assessment of the freshwater biodiversity in protected areas and surveys to better understand the diversity and geography of freshwater species in Brazil. The concept of umbrella species (e.g., certain migratory fishes) would be beneficial for the protection of aquatic biodiversity and habitats. The conservation and improved management of river corridors and associated floodplains and the maintenance of their hydrological integrity is fundamental to preserving Brazil's freshwater biodiversity and the health of its aquatic resources. Resumen:,En términos de biodiversidad, las aguas interiores de Brasil son de enorme importancia global para Algae (25% de las especies del mundo), Porifera (Demospongiae, 33%), Rotifera (25%), Cladocera (Branchiopoda, 20%) y peces (21%). Las especies dulceacuícolas amenazadas incluyen a 44 especies de invertebrados (la mayoría Porifera) y 134 de peces (en su mayor parte Cyprinodontiformes, Rivulidae), distribuidos principalmente en el sur y sureste de Brasil. Las razones de la declinación en la biodiversidad de aguas interiores de Brasil incluyen contaminación y eutrofización, sedimentación, represas y control de inundaciones, pesquerías e introducción de especies. Estos problemas son más conspicuos en las regiones más desarrolladas. La mayoría de las áreas protegidas en Brasil han sido creadas para fauna y flora terrestres, pero también protegen a considerable número de cuerpos de agua y humedales y, aunque muy deficientemente documentado, como tales son de gran importancia para las especies acuáticas. La evaluación de la biodiversidad dulceacuícola en áreas protegidas y muestreos para un mejor entendimiento de la diversidad y geografía de especies dulceacuícolas de Brasil son un reto mayor y apremiante. El concepto de especies sombrilla (e.g., ciertos peces migratorios) sería benéfico para la protección de biodiversidad y hábitats acuáticos. La conservación y perfeccionamiento de la gestión de corredores fluviales y las llanuras de inundación asociadas y el mantenimiento de su integridad hidrológica son fundamentales para preservar la biodiversidad dulceacuícola de Brasil y la salud de sus recursos acuáticos. [source] Does habitat use explain large scale species richness patterns of aquatic beetles in Europe?ECOGRAPHY, Issue 2 2003Ignacio Ribera Regularities in species richness are widely observed but controversy continues over its mechanistic explanation. Because richness patterns are usually a compound measure derived from taxonomically diverse species with different ecological requirements, these analyses may confound diverse causes of species numbers. Here we investigate species richness in the aquatic beetle fauna of Europe, separating major taxonomic groups and two major ecological types, species occurring in standing and running water bodies. We collated species distributions for 800+ species of water beetles in 15 regions across western Europe. Species number in any of these regions was related to three variables: total area size, geographic connectedness of the area, and latitude. Pooled species numbers were accurately predicted, but correlations were different for species associated with either running or standing water. The former were mostly correlated with latitude, while the latter were only correlated with the measure of connectedness or with area size. These differences were generally also observed in each of the four phylogenetically independent lineages of aquatic Coleoptera when analysed separately. We propose that effects of habitat, in this case possibly mediated by different long term persistence of running and standing water bodies, impose constraints at the population or local level which, if effective over larger temporal and spatial scales, determine global patterns of species richness. [source] Spatio-temporal shifts in gradients of habitat quality for an opportunistic avian predatorECOGRAPHY, Issue 2 2003Fabrizio Sergio We used the conceptual framework of the theory of natural selection to study breeding habitat preferences by an opportunistic avian predator, the black kite Milvus migrans. In Europe, black kite populations are mostly found near large networks of aquatic habitats, usually considered optimal for foraging and breeding. We hypothesized that proximity to wetlands could vary among individuals and affect their fitness, and thus be subject to natural selection. We tested the hypothesis first on a population on Lake Lugano (Italian pre-Alps) which has been monitored for nine years, and then on seven other populations, each studied for four,five years, located along a continuum of habitat from large water bodies to scarce aquatic habitat of any kind. In the Lake Lugano population, black kite abundance was negatively related to distance to the lake in all the nine years of study, consistent with long-term natural selection. There was evidence of ongoing directional selection on strategic nest location in three of the years, and evidence of stabilizing selection in two years. In eight of the nine years the trend was for a linear increase in fitness with increasing proximity to the lake. At the population level, results were consistent with adaptive habitat choice in relation to the previous year's spatial variation in fitness: higher associations between fitness and distance to the lake (i.e. higher selection gradients) resulted in higher density variations in the following year, in turn related to the availability of fish, the main local prey. The progressive decline of inland pairs and increase in the density of lakeshore pairs caused a directional long-term trend of declining mean distance to the lake. Breeding near aquatic habitats was associated with higher foraging success, and higher frequency and biomass of prey deliveries to offspring. There was weak evidence of selection in other populations. The inland-wetland gradient of habitat quality may have been affected by predation risk, as estimated by density of a major predator of adults and nestlings, the eagle owl Bubo bubo. Behavioral decisions at the level of the individual probably translated into population effects on density and distribution at various spatial scales. Populations in optimal habitats showed higher density and produced six times as many young per unit space as those in sub-optimal habitats. [source] The association between non-biting midges and Vibrio choleraeENVIRONMENTAL MICROBIOLOGY, Issue 12 2008Meir Broza Summary Vibrio cholerae is a natural inhabitant of aquatic ecosystems, yet its interactions within this habitat are poorly understood. Here we describe the current knowledge on the interaction of V. cholerae with one group of co-inhabitants, the chironomids. Chironomids, non-biting midges (Chironomidae, Diptera), are an abundant macroinvertebrate group encountered in freshwater aquatic habitats. As holometabolous insects, chironomids start life when their larvae hatch from eggs laid at the water/air interface; through various feeding strategies, the larvae grow and pupate to become short-lived, non-feeding, adult flying insects. The discovery of the connection between V. cholerae and chironomids was accidental. While working with Chironomus transavaalensis, we observed the disintegration of its egg masses and searched for a possible microbial agent. We identified V. cholerae as the primary cause of this phenomenon. Haemagglutinin/protease, a secreted extracellular enzyme, degraded the gelatinous matrix surrounding the eggs, enabling bacterial growth. Observation of chironomids in relation to V. cholerae continuously for 7 years in various types of water bodies in Israel, India, and Africa revealed that environmental V. cholerae adhere to egg-mass surfaces of various Chironomini (,bloodworms'). The flying adults' potential to serve as mechanical vectors of V. cholerae from one water body to another was established. This, in turn, suggested that these insects play a role in the ecology of V. cholerae and possibly take part in the dissemination of the pathogenic serogroups during, and especially between, epidemics. [source] Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateauENVIRONMENTAL MICROBIOLOGY, Issue 10 2007Hongchen Jiang Summary Previous investigations of the salinity effects on the microbial community composition have largely been limited to dynamic estuaries and coastal solar salterns. In this study, the effects of salinity and mineralogy on microbial community composition was studied by using a 900-cm sediment core collected from a stable, inland hypersaline lake, Lake Chaka, on the Tibetan Plateau, north-western China. This core, spanning a time of 17 000 years, was unique in that it possessed an entire range of salinity from freshwater clays and silty sands at the bottom to gypsum and glauberite in the middle, to halite at the top. Bacterial and archaeal communities were studied along the length of this core using an integrated approach combining mineralogy and geochemistry, molecular microbiology (16S rRNA gene analysis and quantitative polymerase chain reaction), cultivation and lipid biomarker analyses. Systematic changes in microbial community composition were correlated with the salinity gradient, but not with mineralogy. Bacterial community was dominated by the Firmicutes -related environmental sequences and known species (including sulfate-reducing bacteria) in the freshwater sediments at the bottom, but by halophilic and halotolerant Betaproteobacteria and Bacteroidetes in the hypersaline sediments at the top. Succession of proteobacterial groups along the salinity gradient, typically observed in free-living bacterial communities, was not observed in the sediment-associated community. Among Archaea, the Crenarchaeota were predominant in the bottom freshwater sediments, but the halophilic Halobacteriales of the Euryarchaeota was the most important group in the hypersaline sediments. Multiple isolates were obtained along the whole length of the core, and their salinity tolerance was consistent with the geochemical conditions. Iron-reducing bacteria were isolated in the freshwater sediments, which were capable of reducing structural Fe(III) in the Fe(III)-rich clay minerals predominant in the source sediment. These data have important implications for understanding how microorganisms respond to increased salinity in stable, inland water bodies. [source] Elucidating the factors influencing the biodegradation of cylindrospermopsin in drinking water sourcesENVIRONMENTAL TOXICOLOGY, Issue 3 2008Maree J. Smith Abstract The cyanotoxin cylindrospermopsin (CYN) is produced by several species of cyanobacteria and can be persistent in drinking waters supplies, which is of major concern to water authorities because of its potential to severely compromise human health. Consequently, there is a need to fully understand the persistence of CYN in water supplies, in particular, to determine whether this toxin is readily degraded by endemic aquatic organisms. This study provides insights into the environmental factors that can influence the biodegradation of this toxin in Australian drinking water supplies. Biodegradation of CYN was only evident in water supplies that had a history of toxic Cylindrospermopsis raciborskii blooms. In addition, lag periods were evident prior to the onset of biodegradation; however, repeated exposure of the endemic organisms to CYN resulted in substantial decreases in the lag periods. Furthermore, the concentration of CYN was shown to influence biodegradation with a near linear relationship (R2 of 0.9549) existing between the biodegradation rate and the initial CYN concentration. Temperature was also shown to affect the biodegradation of CYN, which is important since CYN is now being detected in more temperate climates. The presence of copper-based algicides inhibited CYN degradation, which has significant implications since copper-based algicides are commonly used to control cyanobacterial growth in water bodies. The results from this study indicate that the biodegradation of CYN in natural water bodies is a complex process that can be influenced by many environmental factors, some of which include CYN concentration, temperature, and the presence of copper-based algicides. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2008. [source] Hepatotoxic cyanobacterial blooms in the lakes of northern PolandENVIRONMENTAL TOXICOLOGY, Issue 5 2005Joanna Mankiewicz Abstract The lakes of northern Poland are among the recreational sites most valued by Polish and German holiday makers. Given the socioeconomic importance of these lakes, water quality should be maintained at high levels for such intensive recreational purposes. In 2002 studies of species composition, biomass, and toxin production by phytoplankton and the attendant physicochemical variables were performed in order to assess the risk of cyanobacterial blooms in selected northern lakes: Lakes Jeziorak, Jagodne, Szymoneckie, Szymon, Taltowisko, Siecino, and Trzesiecko. The research showed that total phosphorus (0.1 mg P/L) and total nitrogen (1.5 mg N/L) in the studied lakes almost exceeded the permissible limits for eutrophication of water bodies. Most phytoplankton samples were taken in late summer, when cyanobacteria were expected to reach their highest biomass. At the time of sampling most of the lakes were dominated by oscillatorialean and nostocalean species. Average chlorophyll-a concentration was higher than 10 ,g/L in almost all the lakes studied, which corresponded with an average microcystin concentration in the range of 4,5 ,g/L. The main microcystins in the analyzed samples were dmMC-RR, MC-RR, MC-YR, and MC-LR. The results demonstrated a potential for intensive cyanobacterial blooms to appear during the summer in northern Polish lakes. The levels of cyanobacteria found in the lakes investigated indicated that toxicity had reached the first-alert level according to World Health Organization recommendations. If microcystin-producing cyanobacteria dominate, with a microcystin concentration of 2,4 ,g/L, symptoms of toxicity can appear in the swimmers most sensitive to exposure. Analysis of cyanobacterial assemblages in northern Polish lakes also indicated a significant presence of Aphanizomenon species including a Scandinavian species, A. skujae (Skuja) Kom.-Legn. & Cronb. Future investigations of Polish lakes also should assess neurotoxins and study the biology of their producers. This study was the first attempt to evaluate the potential danger of toxic cyanobacterial blooms in the lakes of northern Poland. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 499,506, 2005. [source] Detection and quantification of microcystins from cyanobacteria strains isolated from reservoirs and ponds in MoroccoENVIRONMENTAL TOXICOLOGY, Issue 1 2002B. Oudra Abstract In Morocco, the occurrence of toxic cyanobacteria blooms is confirmed in some water bodies used for recreational and/or as drinking water reservoirs. According to WHO recommendations, the establishment of a monitoring program for microcystins is a necessity. This paper presents toxicological studies of 19 toxic cyanobacteria strains of Microcystis, Synechocystis, Pseudanabaena, and Oscillatoria. These strains were isolated from various water bodies including natural lakes, reservoirs, and ponds located in central regions of Morocco. The isolation, culture, and biomass production of these strains was made on Z8 or BG13 media under laboratory controlled conditions. The hepatotoxicity of cyanobacterial lyophilized material was confirmed by mouse bioassays. The amount of microcystins produced by each strain was determined by the enzyme-linked immunosorbent assay (ELISA). The detection and identification of microcystin variants was performed by high performance liquid chromatography (HPLC) with photodiode array detection. Almost all strains showed medium to high toxicity, the estimated LD50 i.p mice bioassay ranged between 28 to 350 mg/kg body weight. The concentrations of microcystins varied between 2.16 to 944 ,g/g and 26.8 to 1884 ,g/g dry weight determined by ELISA and HPLC, respectively. The screening of bloom-forming and microcystin producer cyanobacteria strains in these fresh water bodies leads us to propose the need for the establishment of a survey of cyanobacteria and a cyanotoxin-monitoring program. © 2002 by Wiley Periodicals, Inc. Environ Toxicol 17: 32,39, 2002 [source] Bioassays with caged Hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2007Erin L. Robertson Abstract The main objectives of this in situ study were to evaluate the usefulness of an in situ bioassay to determine if downstream water bodies at the Key Lake and Rabbit Lake uranium operations (Saskatchewan, Canada) were toxic to Hyalella azteca and, if toxicity was observed, to differentiate between the contribution of surface water and sediment contamination to in situ toxicity. These objectives were achieved by performing 4-d in situ bioassays with laboratory-reared H. azteca confined in specially designed, paired, surface water and sediment exposure chambers. Results from the in situ bioassays revealed significant mortality, relative to the respective reference site, at the exposure sites at both Key Lake (p , 0.001) and Rabbit Lake (p = 0.001). No statistical differences were found between survival in surface water and sediment exposure chambers at either Key Lake (p = 0.232) or Rabbit Lake (p = 0.072). This suggests that surface water (the common feature of both types of exposure chambers) was the primary cause of in situ mortality of H. azteca at both operations, although this relationship was stronger at Key Lake. At Key Lake, the primary cause of aquatic toxicity to H. azteca did not appear to be correlated with the variables measured in this study, but most likely with a pulse of organic mill-process chemicals released during the time of the in situ study , a transient event that was caused by a problem with the mill's solvent extraction process. The suspected cause of in situ toxicity to H. azteca at Rabbit Lake was high levels of uranium in surface water, sediment, and pore water. [source] Effects of long-chain hydrocarbon-polluted sediment on freshwater macroinvertebratesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2005Vincent Pettigrove Abstract High-molecular weight (>C16) hydrocarbons (HMWHs) are common pollutants in sediments of freshwater systems, particularly urban water bodies. No sediment quality guidelines exist for total hydrocarbons; more emphasis is placed on polyaromatic hydrocarbons, the most toxic component of hydrocarbons. A field-based microcosm experiment was conducted to determine whether unpolluted sediments spiked with synthetic motor oil impair freshwater macroinvertebrate assemblages. Total petroleum hydrocarbon (TPH) concentrations of 860 mg/kg dry weight significantly increased the abundance of Polypedilum vespertinus and Cricotopus albitarsis and decreased the abundance of Paratanytarsus grimmii adults (all Chironomidae), whereas TPH concentrations ranging from 1,858 to 14,266 mg/kg produced a significant reduction in the total numbers of taxa and abundance, with significant declines in the abundance of nine chironomid taxa. About 28% of water bodies surveyed in urban Melbourne, Australia, had TPH concentrations in sediments likely to cause ecological impairment, and about 14% of the water bodies surveyed are likely to have reduced species richness and abundance. Therefore, HMWHs can be a significant pollutant in urban water bodies. Freshwater sediment quality guidelines should be developed for this ubiquitous urban pollutant. [source] Lime and cow slurry application temporarily increases organic phosphorus mobility in an acid soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2007P. N. C. MurphyArticle first published online: 13 OCT 200 Summary Phosphorus loss from agricultural soils to water is recognized as a major contributor to eutrophication of surface water bodies. There is much evidence to suggest that liming, a common agricultural practice, may decrease the risk of P loss by decreasing P solubility. An unsaturated leaching column experiment, with treatments of control and two lime rates, was carried out to investigate the effects of liming on P mobility in a low-P acid Irish soil, which was sieved and then packed in columns. Phosphorus was applied at the soil surface in the form of KH2PO4 in solution or as cow slurry. Soil solution was sampled at time intervals over depth and analysed for P fractions. Organic P (OP) was the dominant form of P mobile in soil solution. Liming increased OP mobility, probably through increased dispersion of OP with increased pH. Slurry application also increased OP mobility. Results indicated the potential for OP loss following heavy (100 m,3 ha,1) cow slurry application, even from low-P soils, and suggested that liming may increase this risk. Reactive P (RP) was sorbed strongly and rapidly by the soil and did not move substantially below 5 cm depth. As a result, Olsen-P values in the top 2 cm were greatly increased, which indicates an increased risk of RP loss in overland flow. Lime showed little potential as a soil amendment to reduce the risk of P loss. [source] EVOLUTION OF PREY BEHAVIOR IN RESPONSE TO CHANGES IN PREDATION REGIME: DAMSELFLIES IN FISH AND DRAGONFLY LAKESEVOLUTION, Issue 3 2003R. Stoks Abstract In a large behavioral experiment we reconstructed the evolution of behavioral responses to predators to explore how interactions with predators have shaped the evolution of their prey,behavior. All Enallagma damselfly species reduced both movement and feeding in the presence of coexisting predators. Some Enallagma species inhabit water bodies with both fish and dragonflies, and these species responded to the presence of both predators, whereas other Enallagma species inhabit water bodies that have only large dragonflies as predators, and these species only responded to the presence of dragonflies. Lineages that shifted to live with large dragonflies showed no evolution in behaviors expressed in the presence of dragonflies, but they evolved greater movement in the absence of predators and greater movement and feeding in the presence of fish. These results suggest that Enallagma species have evolutionarily lost the ability to recognize fish as a predator. Because species coexisting with only dragonfly predators have also evolved the ability to escape attacking dragonfly predators by swimming, the decreased predation risk associated with foraging appears to have shifted the balance of the foraging/predation risk trade-off to allow increased activity in the absence of mortality threats to evolve in these lineages. Our results suggest that evolution in response to changes in predation regime may have greater consequences for characters expressed in the absence of mortality threats because of how the balance between the conflicting demands of growth and predation risk are altered. [source] Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species?FEMS MICROBIOLOGY ECOLOGY, Issue 2 2007Wolfgang Petz Abstract Ciliate diversity was investigated in situ in freshwater ecosystems of the maritime (South Shetland Islands, mainly Livingston Island, 63°S) and continental Antarctic (Victoria Land, 75°S), and the High Arctic (Svalbard, 79°N). In total, 334 species from 117 genera were identified in both polar regions, i.e. 210 spp. (98 genera) in the Arctic, 120 spp. (73 genera) in the maritime and 59 spp. (41 genera) in the continental Antarctic. Forty-four species (13% of all species) were common to both Arctic and Antarctic freshwater bodies and 19 spp. to both Antarctic areas (12% of all species). Many taxa are cosmopolitans but some, e.g. Stentor and Metopus spp., are not, and over 20% of the taxa found in any one of the three areas are new to science. Cluster analysis revealed that species similarity between different biotopes (soil, moss) within a study area was higher than between similar biotopes in different regions. Distinct differences in the species composition of freshwater and terrestrial communities indicate that most limnetic ciliates are not ubiquitously distributed. These observations and the low congruence in species composition between both polar areas, within Antarctica and between high- and temperate-latitude water bodies, respectively, suggest that long-distance dispersal of limnetic ciliates is restricted and that some species have a limited geographical distribution. [source] Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophilaFEMS MICROBIOLOGY ECOLOGY, Issue 3 2006Antje Gerloff-Elias Abstract Chlamydomonas acidophila, a unicellular green alga, is a dominant phytoplankton species in acidic water bodies, facing severe environmental conditions such as low pH and high heavy metal concentrations. We examined the pH-, and temperature-dependent accumulation of heat-shock proteins in this alga to determine whether heat-shock proteins play a role in adaptation to their environment. Our results show increased heat-shock proteins accumulation at suboptimal pHs, which were not connected with any change in intracellular pH. In comparison to the mesophilic Chlamydomonas reinhardtii, the acidophilic species exhibited significantly higher accumulations of heat-shock proteins under control conditions, indicating an environmental adaptation of increased basal levels of heat-shock proteins. The results suggest that heat-shock proteins might play a role in the adaptation of C. acidophila, and possibly other acidophilic algae, to their extreme environment. [source] Age-related movement patterns and population structuring in southern garfish, Hyporhamphus melanochir, inferred from otolith chemistryFISHERIES MANAGEMENT & ECOLOGY, Issue 4 2009M. A. STEER Abstract, The southern garfish, Hyporhamphus melanochir (Val.), is an important inshore fishery species in South Australia. Over the past few years there have been concerns with this fishery, which is now considered to be over-exploited. Currently, the fishery is assumed to consist of two separate stocks, but there is no understanding of movement patterns both within and between these two stocks to justify this assumption. Otolith chemistry was used to infer age-related patterns of movement, delineate potential sub-populations and determine the extent of mixing within South Australian coastal waters. Results indicated that the population structuring of garfish is more complex than previously assumed and it seems that stocks can be discriminated at a much finer spatial scale. Garfish collected from sites separated by <60 km displayed significantly different chemical signatures (relative concentrations of 7Li, 24Mg, 55Mn, 88Sr and 138Ba) in their otoliths, especially during their second year of growth, indicating that they had inhabited different water bodies. From a broader perspective, South Australian garfish can be partitioned into six regional components with various levels of inter-mixing. From these results, it was suggested that assessment and management of the fishery may have to be restructured to align with the smaller spatial units. [source] Challenges in developing fish-based ecological assessment methods for large floodplain riversFISHERIES MANAGEMENT & ECOLOGY, Issue 6 2007J. J. DE LEEUW Abstract, Large European floodplain rivers have a great diversity in habitats and fish fauna, but tend to be heavily modified. The complexity of these river systems and their multiple human impacts pose considerable challenges for assessment of their ecological status. This paper discusses: (1) the application of historical information on fish fauna and habitat availability to describe reference conditions; (2) responses of fish assemblages to human disturbance by comparing various rivers and river segments with different impacts and/or time series within rivers; (3) the role of floodplain water bodies in ecological assessment; and (4) monitoring of large rivers using different gears and sampling designs for main channels and floodplain habitats. The challenge for the future is to standardise and calibrate sampling methods and data to enhance the potential for ecological assessment of large rivers. [source] Creation of artificial upwelling areas for brown trout, Salmo trutta, spawning in still water bodiesFISHERIES MANAGEMENT & ECOLOGY, Issue 5 2006Å. BRABRAND Abstract, Brown trout, Salmo trutta L., spawning sites were constructed by creating areas of artificial upwelling water, 252 ± 37 mL m,2 min,1 (95% CL), through appropriately sized spawning gravel substrate in 3 m2 vessels buried in the bottom of a 150-m2 pond. Natural spawning occurred in the vessels during autumn 2001,2004, with hatching and alevin swim up the following spring. In areas of upwelling, egg survival was 85,95%, while no live eggs were observed in areas without upwelling. In areas with upwelling, the maximum density of live eggs at the eyed stage was 570,1510 eggs m,2. In spring 2004 and 2005, the density of alevins was estimated at 322 (±187) m,2 and 567 (±217) m,2, respectively, in areas with upwelling water, compared with 35.2 ± 25.4 m,2 in areas without upwelling water in 2004. [source] Present status, and social and economic significance of inland fisheries in GermanyFISHERIES MANAGEMENT & ECOLOGY, Issue 4-5 2001H. Wedekind The Federal Republic of Germany is situated in the central part of Europe and covers an area of 358 000 km2. The climate is maritime in the north and continental in the south with precipitation varying between 600 and 2000 mm year,1. Lakes and farm ponds are common in the north-eastern part of the country and in the alpine and pre-alpine regions to the south. A great number of small natural and artificial water bodies exist all over the country. There are about 800 000 ha of inland waters. The population of 82 million people are concentrated around a number of large conurbations. Over the last 150 years, intense use of the water resources by industry led to pollution and a severe decrease in river and lake fisheries. Only 587 inland fishing enterprises still existed in the early 1990s. Catches from commercial fisheries are decreasing with a total of 3469 t being caught in 1998. The Lake Constance fishery, which landed about 840 t in 1998, is an exception to the general trend. Strong competition for the aquatic resource is affecting commercial fisheries, whilst recreational fisheries have gained increasing importance over the last decades. Recent studies provided basic information on anglers' habits, social structure and economic significance as well as their effects on the waters. Aquaculture mainly produces rainbow trout, Oncoryhnchus mykiss (Walbaum) 20 000 t and carps (12 000 t) e.g. Cyprinus carpio L. Despite pressures from industry and conservation movements, regional support for fisheries and their development has intensified, leading to improved water quality. There are even attempts to re-establish abandoned fisheries. Co-operation with conservationists provides an opportunity for the future survival and development of fisheries. The fisheries and aquaculture sectors changed drastically after the reunification of Germany. The collapse of the infrastructure in the eastern part of Germany led to a decline in production and to a special investigation on recent developments of this sector. [source] Balances of phosphorus and nitrogen in carp pondsFISHERIES MANAGEMENT & ECOLOGY, Issue 1-2 2000R. Knösche The impact of carp pond effluents on natural waters was investigated in the German federal states of Brandenburg, Saxony and Bavaria, and in Hungary. Data from 38 ponds (size = 0.25,122 ha) were available for the calculation of inlet,outlet differences. An average difference of 0.51 kg phosphorus (P) ha,1 year,1 was obtained. This means that every hectare of pond surface releases 510 g P less than it receives from the incoming water. This result was independent of the amount of fish harvested (, 1500 ha,1 year,1). The average retention of P (P-balance) was 5.71 kg P ha,1 year,1. Phosphorus retention increased with increasing intensity of production. Nitrogen (N) retention increased with production intensity from 78.5 kg ha,1 year,1 in German standard ponds to >,290 kg N ha,1 year,1in pig-cum-fish ponds in Hungary. A predominantly mineralized sludge suspension is released during harvesting at loads below 1% of the retention capacity of the pond. Under usual pond management regimes, the sludge load during harvesting ranged from 50 to 200 L ha,1, equivalent to 0.3,9.3 g dry matter ha,1. The present study suggests that ponds are not a burden on the environment. By contrast, these water bodies improve water quality. Therefore, pressures to reduce the intensity of pond production cannot be justified on the basis of supposed impacts on water quality. However, even if loads during harvesting are low compared with the retention capacity of the pond, more effort should be carried out to reduce the pollution of streams by pond outlets downstream. This can be done by limiting pond drainage to periods when the suspended material has settled or by short-term sedimentation of the sludge in a settling pond downstream of the rearing facility. [source] Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversityFRESHWATER BIOLOGY, Issue 6 2010THAÍSA SALA MICHELAN Summary 1.,The issue of freshwater species being threatened by invasion has become central in conservation biology because inland waters exhibit the highest species richness per unit area, but apparently have the highest extinctions rates on the planet. 2.,In this article, we evaluated the effects of an exotic, invasive aquatic grass (Urochloa subquadripara, tropical signalgrass) on the diversity and assemblage composition of native macrophytes in four Neotropical water bodies (two reservoirs and two lakes). Species cover was assessed in quadrats, and plant biomass was measured in further quadrats, located in sites where tropical signalgrass dominated (D quadrats) and sites where it was not dominant or entirely absent (ND quadrats). The effects of tropical signalgrass on macrophyte species richness, Shannon diversity and number of macrophyte life forms (a surrogate of functional richness) were assessed through regressions, and composition was assessed with a DCA. The effects of tropical signalgrass biomass on the likelihood of occurrence of specific macrophyte life forms were assessed through logistic regression. 3.,Tropical signalgrass had a negative effect on macrophyte richness and Shannon and functional diversity, and also influenced assemblage composition. Emergent, rooted with floating stems and rooted submersed species were negatively affected by tropical signalgrass, while the occurrence of free-floating species was positively affected. 4.,Our results suggest that competition with emergent species and reduction of underwater radiation, which reduces the number of submersed species, counteract facilitation of free-floating species, contributing to a decrease in plant diversity. In addition, homogenisation of plant assemblages shows that tropical signalgrass reduces the beta diversity in the macrophyte community. 5.,Although our results were obtained at fine spatial scales, they are cause for concern because macrophytes are an important part of freshwater diversity. [source] How can dragonflies discern bright and dark waters from a distance?FRESHWATER BIOLOGY, Issue 9 2002The degree of polarisation of reflected light as a possible cue for dragonfly habitat selection SUMMARY 1.,Based on the findings that some dragonflies prefer either ,dark' or ,bright' water (as perceived by the human eye viewing downwards perpendicularly to the water surface), while others choose both types of water bodies in which to lay their eggs, the question arises: How can dragonflies distinguish a bright from a dark pond from far away, before they get sufficiently close to see it is bright or dark? 2.,Our hypothesis is that certain dragonfly species may select their preferred breeding sites from a distance on the basis of the polarisation of reflected light. Is it that waters viewed from a distance can be classified on the basis of the polarisation of reflected light? 3.,Therefore we measured, at an angle of view of 20° from the horizontal, the reflection-polarisation characteristics of several ponds differing in brightness and in their dragonfly fauna. 4.,We show that from a distance, at which the angle of view is 20° from the horizontal, dark water bodies cannot be distinguished from bright ones on the basis of the intensity or the angle of polarisation of reflected light. At a similar angle of view, however, dark waters reflect light with a significantly higher degree of linear polarisation than bright waters in any range of the spectrum and in any direction of view with respect to the sun. 5.,Thus, the degree of polarisation of reflected light may be a visual cue for the polarisation-sensitive dragonflies to distinguish dark and bright water bodies from far away. Future experimental studies should prove if dragonflies do indeed use this cue for habitat selection. [source] Dispersal of adult aquatic Chironomidae (Diptera) in agricultural landscapesFRESHWATER BIOLOGY, Issue 3 2000Yannick R. Delettre SUMMARY 1This study investigates the possible influence of terrestrial landscape structure on the spatial distribution of adult Chironomidae emerging from water bodies in three agricultural areas, each with hedgerow networks, in Brittany (France). 2Using spatially explicit data from 128 yellow pan traps set in pairs at the bottom of hedges throughout the three study areas, we show that landscape structure and heterogeneity must be considered at two different spatial scales. 3At a global scale, distance to water bodies was the main factor explaining the spatial distribution of adult chironomids: both species richness and abundance changed beyond a critical distance to the stream, resulting in different species assemblages of flying insects. 4At a local scale, the abundance of species and individuals at rest in hedges changed with the quality of the hedge (mainly determined by canopy width and cover of the different vegetation layers). 5The density of the hedgerow network, and landscape openness, both influenced the dispersal of chironomid species from water bodies. 6This study, which provides the first estimate of the dispersal capabilities of chironomids in particular landscapes, suggests that the terrestrial environment is an essential component of population dynamics and community structure in aquatic Chironomidae. [source] Redox control of N:P ratios in aquatic ecosystemsGEOBIOLOGY, Issue 2 2009T. M. QUAN ABSTRACT The ratio of dissolved fixed inorganic nitrogen to soluble inorganic phosphate (N:P) in the ocean interior is relatively constant, averaging ~16 : 1 by atoms. In contrast, the ratio of these two elements spans more than six orders of magnitude in lakes and other aquatic environments. To understand the factors influencing N:P ratios in aquatic environments, we analyzed 111 observational datasets derived from 35 water bodies, ranging from small lakes to ocean basins. Our results reveal that N:P ratios are highly correlated with the concentration of dissolved O2 below ~100 µmol L,1. At higher concentrations of O2, N:P ratios are highly variable and not correlated with O2; however, the coefficient of variation in N:P ratios is strongly related to the size of the water body. Hence, classical Redfield ratios observed in the ocean are anomalous; this specific elemental stoichiometry emerges not only as a consequence of the elemental ratio of the sinking flux of organic matter, but also as a result of the size of the basins and their ventilation. We propose that the link between N:P ratios, basin size and oxygen levels, along with the previously determined relationship between sedimentary ,15N and oxygen, can be used to infer historical N:P ratios for any water body. [source] Copepod life cycle adaptations and success in response to phytoplankton spring bloom phenologyGLOBAL CHANGE BIOLOGY, Issue 6 2009HANNO SEEBENS Abstract In a seasonal environment, the timing of reproduction is usually scheduled to maximize the survival of offspring. Within deep water bodies, the phytoplankton spring bloom provides a short time window of high food quantity and quality for herbivores. The onset of algal bloom development, however, varies strongly from year to year due to interannual variability in meteorological conditions. Furthermore, the onset is predicted to change with global warming. Here, we use a long-term dataset to study (a) how a cyclopoid copepod, Cyclops vicinus, is dealing with the large variability in phytoplankton bloom phenology, and (b) if bloom phenology has an influence on offspring numbers. C. vicinus performed a two-phase dormancy, that is, the actual diapause of fourth copepodid stages at the lake bottom is followed by a delay in maturation, that is, a quiescence, within the fifth copepodid stage until the start of the spring bloom. This strategy seems to guarantee a high temporal match of the food requirements for successful offspring development, especially through the highly vulnerable naupliar stages, with the phytoplankton spring bloom. However, despite this match with food availability in all study years, offspring numbers, that is, offspring survival rates were higher in years with an early start of the phytoplankton bloom. In addition, the phenology of copepod development suggested that also within study years, early offspring seems to have lower mortality rates than late produced offspring. We suggest that this is due to a longer predator-free time period and/or reduced time stress for development. Hence, within the present climate variability, the copepod benefited from warmer spring temperatures resulting in an earlier phytoplankton spring bloom. Time will show if the copepod's strategy is flexible enough to cope with future warming. [source] Tracking palustrine water seasonal and annual variability in agricultural wetland landscapes using Landsat from 1997 to 2005GLOBAL CHANGE BIOLOGY, Issue 4 2007OFER BEERI Abstract Wetlands densely populate the ecoregion transecting the center of the Prairie Pothole Region (PPR) known as the Missouri Coteau and epicenter to the most productive waterfowl-breeding habitat in North America. These palustrine, depressional basin waters vacillate with regional drought and deluge, so surface water fluctuations over time modulate wetland productivity, habitat, and water quality functions. Models predict formidable effects of climate change on glacial basin surface waters, yet large-scale, long-term observation data are lacking to compare against predicted changes. Current, optical-based water detection models do not delineate marsh vegetation from shallow, turbid, high-chlorophyll waters common to the region. We developed a palustrine wetland spectral model for tracking open surface waters using Landsat imagery, which we evaluated for a 2500 km2 landscape that estimates seasonal and annual open water variability for thousands of individual wetlands in the Missouri Coteau ecoregion. Detection accuracy of 96% was achieved for water bodies greater than a half-pixel in size. We identified shifts in the distribution of water permanence classes within and between years for waters emerging in spring, mid-summer, and late summer from 1997 to 2005 and identified a maximum of 19 047 basins with open water (12% of the landscape) populating 2500 km2. For the 2005 growing season, we observed only 8757 basins with open water (6% of the landscape) for the same area. Declines were greatest for water bodies detected only in spring, suggesting a loss of those wetlands functioning to recharge groundwater stores early in the season and a high sensitivity to observed reductions in snowfall. If landscape factors driving open water coverage and wetland density are similar for the entire Missouri Coteau, we estimate the number of basins containing at least a pixel of water for this region declined from 577 600 to 266 000 between 1997 and 2005. [source] Fracture Control of Ground Water Flow and Water Chemistry in a Rock AquitardGROUND WATER, Issue 5 2007Timothy T. Eaton There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. [source] Storage dynamics and streamflow in a catchment with a variable contributing areaHYDROLOGICAL PROCESSES, Issue 16 2010C. Spence Abstract Storage heterogeneity effects on runoff generation have been well documented at the hillslope or plot scale. However, diversity across catchments can increase the range of storage conditions. Upscaling the influence of small-scale storage on streamflow across the usually more heterogeneous environment of the catchment has been difficult. The objective of this study was to observe the distribution of storage in a heterogeneous catchment and evaluate its significance and potential influence on streamflow. The study was conducted in the subarctic Canadian Shield: a region with extensive bedrock outcrops, shallow predominantly organic soils, discontinuous permafrost and numerous water bodies. Even when summer runoff was generated from bedrock hillslopes with small storage capacities, intermediary locations with large storage capacities, particularly headwater lakes, prevented water from transmitting to higher order streams. The topographic bounds of the basin thus constituted the maximum potential contributing area to streamflow and rarely the actual area. Topographic basin storage had little relation to basin streamflow, but hydrologically connected storage exhibited a strong hysteretic relationship with streamflow. This relationship defines the form of catchment function such that the basin can be defined by a series of storing and contributing curves comparable with the wetting and drying curves used in relating tension and hydraulic conductivity to water content in unsaturated soils. These curves may prove useful for catchment classification and elucidating predominant hydrological processes. Copyright © 2009 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada. [source] Long-term final void salinity prediction for a post-mining landscape in the Hunter Valley, New South Wales, AustraliaHYDROLOGICAL PROCESSES, Issue 2 2005Dr G. R. Hancock Abstract Opencast mining alters surface and subsurface hydrology of a landscape both during and post-mining. At mine closure, following opencast mining in mines with low overburden to coal ratios, a void is left in the final landform. This final void is the location of the active mine pit at closure. Voids are generally not infilled within the mines' lifetime, because of the prohibitive cost of earthwork operations, and they become post-mining water bodies or pit lakes. Water quality is a significant issue for pit lakes. Groundwater within coal seams and associated rocks can be saline, depending on the nature of the strata and groundwater circulation patterns. This groundwater may be preferentially drawn to and collected in the final void. Surface runoff to the void will not only collect salts from rainfall and atmospheric fallout, but also from the ground surface and the weathering of fresh rock. As the void water level rises, its evaporative surface area increases, concentrating salts that are held in solution. This paper presents a study of the long term, water quality trends in a post-mining final void in the Hunter Valley, New South Wales, Australia. This process is complex and occurs long term, and modelling offers the only method of evaluating water quality. Using available geochemical, climate and hydrogeological data as inputs into a mass-balance model, water quality in the final void was found to increase rapidly in salinity through time (2452 to 8909 mg l,1 over 500 years) as evaporation concentrates the salt in the void and regional groundwater containing high loads of salt continues to flow into the void. Copyright © 2004 John Wiley & Sons, Ltd. [source] Validation of a vegetated filter strip model (VFSMOD)HYDROLOGICAL PROCESSES, Issue 5 2001Dr Majed Abu-Zreig Abstract Vegetated filter strips (VFS) are designed to reduce sediment load and other pollutants into water bodies. However, adaptation of VFS in the field has been limited owing to lack of data about their efficiency and performance under natural field conditions. A number of models are available that simulate sediment transport and trapping in VFS, but there is a general lack of confidence in VFS models owing to limited validation studies and model limitations that prevent correct application of these models under field conditions. The objective of this study is to test and validate a process-based model (VFSMOD) that simulates sediment trapping in VFS. This model links three submodels: modified Green,Ampt's infiltration, Quadratic overland flow submodel based on kinematic wave approximation and University of Kentucky sediment filtration model. A total of 20 VFS, 2, 5, 10 and 15 m long and with various vegetation covers, were tested under simulated sediment and runoff conditions. The results of these field experiments were used to validate the VFS model. The model requires 25 input parameters distributed over five input files. All input parameters were either measured or calculated using experimental data. The observed sediment trapping efficiencies varied from 65% in the 2-m long VFS to 92% in the 10-m long filters. No increase in sediment removal efficiency was observed at higher VFS length. Application of the VFS model to experimental data was satisfactory under the condition that actual flow widths are used in the model instead of the total filter width. Predicted and observed sediment trapping efficiencies and infiltration volume fitted very well, with a coefficient of determination (R2) of 0·9 and 0·95, respectively. Regression analyses revealed that the slope and intercept of the regression lines between predicted versus observed infiltration volume and trapping efficiency were not significantly different than the line of perfect agreement with a slope of 1·0 and intercept of 0·0. Copyright © 2001 John Wiley & Sons, Ltd. [source] A regional climate study of Central America using the MM5 modeling system: results and comparison to observationsINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2006Jose L. Hernandez Abstract The Mesoscale Modeling system, version 3.6 (MM5) regional modeling system has been applied to Central America and has been evaluated against National Oceanic and Atmospheric Administration/National Climatic Data Center (NOAA/NCDC) daily observations and the Global Precipitation Climatology Project (GPCP) precipitation data. We compare model results and observations for 1997 and evaluate various climate parameters (temperature, wind speed, precipitation and water vapor mixing ratio), emphasizing the differences within the context of the station dependent geographical features and the land use (LU) categories. At 9 of the 16 analyzed stations the modeled temperature, wind speed and vapor mixing ratio are in agreement with observations with average model-observation differences consistently lower than 25%. MM5 has better performance at stations strongly impacted by monsoon systems, regions typified by low topography in coastal areas and areas characterized by evergreen, broad-leaf and shrub land vegetation types. At four stations the model precipitation is about a factor of 3,5 higher than the observations, while the simulated wind is roughly twice what is observed. These stations include two inland stations characterized by croplands close to water bodies; one coastal station in El Salvador adjacent to a mountain-based cropland area and one station at sea-level. This suggests that the model does not adequately represent the influence of topographic features and water bodies close to these stations. In general, the model agrees reasonably well with measurements and therefore provides an acceptable description of regional climate. The simulations in this study use only two seasonal maps of land cover. The main model discrepancies are likely attributable to the actual annual cycle of land,atmosphere vapor and energy exchange that has a temporal scale of days to weeks. These fluxes are impacted by surface moisture availability, albedo and thermal inertia parameters. Copyright © 2006 Royal Meteorological Society. [source] |