Water Absorption Index (water + absorption_index)

Distribution by Scientific Domains


Selected Abstracts


Changes in the biochemical and functional properties of the extruded hard-to-cook cowpea (Vigna unguiculata L. Walp)

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 4 2010
Karla A. Batista
Summary Changes in the biochemical and functional properties of the hard-to-cook cowpea bean after treatment by the extrusion process are reported. The extrusion was carried out at 150 °C, with a compression ratio screw of 3:1, a 5-mm die, and a screw speed of 150 r.p.m. The extrusion caused the complete inactivation of the ,-amylase and lectin and it also reduced the trypsin inhibitor activity (38.2%) and phytic acid content (33.2%). The functional properties were also modified by the process, an increase of 2.5 times in the water absorption index and 3.1% in the water solubility were observed. The digestibility of the hard-to-cook flour of the cowpea bean was improved after the extrusion, with a 55.9% increase in protein digestibility and a 5.9% increase in starch digestibility. [source]


Effect of extrusion parameters on flavour retention, functional and physical properties of mixtures of starch and d -limonene encapsulated in milk protein

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 2006
Sri Yuliani
Summary The purpose of this research was to investigate the retention of flavour volatiles encapsulated in water-insoluble systems during high temperature,short time extrusion process. A protein precipitation method was used to produce water-insoluble capsules encapsulating limonene, and the capsules were added to the extruder feed material (cornstarch). A twin-screw extruder was used to evaluate the effect of capsule level of addition (0,5%), barrel temperature (125,145 °C) and screw speed (145,175 r.p.m.) on extruder parameters (torque, die pressure, specific mechanical energy, residence time distribution) and extrudate properties [flavour retention, texture, colour, density, expansion, water absorption index, water solubility index (WSI)]. Capsule level had a significant effect on extrusion conditions, flavour retention and extrudate physical properties. Flavour retention increased with the increase in capsule level from 0% to 2.5%, reached a maximum value at capsule level of 2.5% and decreased when the capsule level increased from 2.5% to 5%. The die pressure, torque, expansion ratio, hardness and WSI exhibited the opposite effect with the presence of capsules. [source]


EFFECTS OF EXTRUSION CONDITIONS ON PHYSICOCHEMICAL PROPERTIES OF A MUTANT RICE CULTIVAR, GOAMI2 , HIGH IN NONDIGESTIBLE CARBOHYDRATES

JOURNAL OF FOOD QUALITY, Issue 5 2008
I. CHOI
ABSTRACT A mutant rice Goami2, a cultivar high in nondigestible carbohydrates (NDCs), was extrusion-cooked at feed moisture (20, 25%), screw speed (200, 300 rpm) and barrel temperature (110, 120 and 130C). Effects of extrusion conditions on the physical and functional properties were investigated. NDCs were determined by total dietary fiber (TDF) and resistant starch (RS) contents. Increasing moisture resulted in an increment of density, water absorption index (WAI) and hardness, and a decrement in expansion and water solubility index (WSI). A higher barrel temperature decreased the hardness and increased the WSI probably due to a higher proportion of gelatinized starch. Extrusion caused a reduction in TDF in the extrudates, as well as a significant decrease in RS contents. However, extrudates processed at moisture (%), screw speed (rpm) and barrel temperature (C) combinations of 25/200/110 and 25/200/120 showed no significant difference in TDF contents compared with its raw rice. Multiple regression models showed that feed moisture had the most pronounced effect on extrudate qualities, followed by barrel temperature and screw speed. PRACTICAL APPLICATIONS Rice, being one of the primary dietary sources of carbohydrates worldwide, is the major energy and nutritional sources. In recent years, demands have been increasing for rice with a wide range of value-added properties, such as enhanced nutrient, aroma, color and rice kernel shape, including functional properties. Goami2 is a mutant rice of Ilpumbyeo, a high japonica rice cultivar, and has been revealed to have higher nondigestible fractions. However, Goami2 rice has unsuitable properties for traditional cooking because of the difficulty of gelatinization, which might result in a hard texture of cooked rice compared with that of ordinary rice. On the basis of its nutritional and functional benefits, exploiting the possible utilization of Goami2 for processed food products would increase the potential consumption of Goami2 for various food products. [source]


Physico-chemical and Sensory Characteristics of Flavored Snacks from Extruded Cassava/Pigeonpea Flour

JOURNAL OF FOOD SCIENCE, Issue 1 2003
R. Rampersad
ABSTRACT: The effects of pigeonpea flour (PF) addition to cassava flour (CF) on the sensory and physico-chemical quality of extrudates were investigated. Products with added PF were more yellow, had higher protein, bulk density, and water absorption index with lower expansion and water absorption index. Extrudate with 95% CF/5% PF had a suitable crisp to hard texture. All enrobed products were liked moderately to very much in overall acceptability. Chocolate extrudates were most liked (p < 0.01) for flavor and color over paprika, hickory, and cheese/onion. [source]


PHYSICOCHEMICAL PROPERTIES OF TEXTURIZED MEAT ANALOG MADE FROM PEANUT FLOUR AND SOY PROTEIN ISOLATE WITH A SINGLE-SCREW EXTRUDER ,

JOURNAL OF TEXTURE STUDIES, Issue 4 2004
E.L. PARMER JR.
ABSTRACT The objective of this study was to establish conditions for the texturization of soy protein isolate and peanut flour mixture using a single-screw extruder. The effects of feed moisture, screw-speed, and barrel temperature on the characteristics of the texturized products were studied. Feed moisture was the most important factor affecting the texture. Feeding ingredients with 22% moisture had the highest water absorption and expansion indices, and Hunter L value (P < 0.05). When the screw speed was above 180 RPM, the meat analog had a 12% decrease in the expansion index and a 5% decrease in moisture content (P < 0.05). When the barrel temperature was increased to 165C, there was a 12% decrease in the water absorption index, and a 23% decrease in the expansion index of the meat analogs (P < 0.05). Overall, an acceptable meat analog could be successfully produced with 22% moisture in the raw ingredient, screw speed at 140 RPM, and barrel temperatures at 150, 155, and 160C for the three temperature zones respectively. [source]