Home About us Contact | |||
Warm Front (warm + front)
Selected AbstractsOrographic influences during winter precipitation events on the Avalon Peninsula, NewfoundlandMETEOROLOGICAL APPLICATIONS, Issue 4 2000C E Banfield Precipitation enhancement over a low coastal hill in winter is demonstrated for particular associations of synoptically determined onshore airflow and local geography encountered over southeastern Newfoundland. Four such cases, involving a mixture of pre-warm-frontal precipitation types at surface temperatures just below freezing, are analysed using comparative surface gauge records from sites at the coast and hill summit and detailed volume scan data from a Doppler radar. Whilst precipitation at the hill summit and upwind coast was of similar overall duration in each case, the surface rates on the hilltop exceeded those at the coast by 1.0,4.0 mm h,1 during different stages of the events. Analysis of the Doppler reflectivity patterns reveals that intensities are especially enhanced near the windward hill crest, supporting the observed association of greatest enhancement with a strong local upslope wind component exceeding 20 m s,1. In the majority of these cases the enhancement is maintained primarily by the ,seeder,feeder' mechanism, which appears to be accelerated during precipitation transitions and with the surface warm front 120,150 km distant; however, a preliminary phase of enhancement due to topographically induced uplift of stable pre-frontal air is also recognised in one case. Copyright © 2000 Royal Meteorological Society [source] Baroclinic development within zonally-varying flowsTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 626 2007David M. Schultz Abstract Previous idealized-modelling studies have shown the importance of across-jet barotropic shear to the resulting evolution of cyclones, anticyclones, surface-based fronts, and upper-level fronts. Meanwhile, many observational studies of cyclones have shown the importance of along-jet variations in the horizontal wind speed (i.e. confluence and diffluence). This study investigates the importance of these along-jet (zonal, for zonally-oriented jets) variations in the horizontal wind speed to the resulting structures and evolutions of baroclinic waves, using idealized models of growing baroclinic waves. An idealized primitive-equation channel model is configured with growing baroclinic perturbations embedded within confluent and diffluent background flows. When the baroclinic perturbations are placed in background confluence, the lower-tropospheric frontal structure and evolution initially resemble the Shapiro,Keyser cyclone model, with a zonally-oriented cyclone, strong warm front, and bent-back warm front. Later, as the baroclinic wave is amplified in the stronger downstream baroclinicity, the warm sector of the cyclone narrows, becoming more reminiscent of the Norwegian cyclone model. The upper-level frontal structure develops with a southwest,northeast orientation, and becomes strongest at the base of the trough, where geostrophic cold advection is occurring. In contrast, when the baroclinic perturbations are placed in background diffluence, the lower-tropospheric frontal structure and evolution resemble the Norwegian cyclone model, with a meridionally-oriented cyclone, strong cold front, and occluded front. The upper-level frontal structure is initially oriented northwest,southeast on the western side of the trough, before becoming zonally oriented. Weak geostrophic temperature advection occurs along its length. These results are compared to those from previous observational and idealized-modelling studies. Copyright © 2007 Royal Meteorological Society [source] Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the East Coast of the United StatesTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 577 2001Fuqing Zhang Abstract Detailed diagnostic analyses are performed upon a mesoscale numerical simulation of a well-observed gravity-wave event that occurred on 4 January 1994 along the East Coast of the United States. The value of using wavelet analysis to investigate the evolving gravity-wave structure and of using potential vorticity (PV) inversion to study the nature of the flow imbalance in the wave generation region is demonstrated. The cross-stream Lagrangian Rossby number, the residual in the nonlinear balance equation, and the unbalanced geopotential-height field obtained from PV inversion are each evaluated for their usefulness in diagnosing the flow imbalance. All of these fields showed clear evidence of strong imbalance associated with a middle-to-upper tropospheric jet streak, and tropopause fold upstream of the large-amplitude gravity wave several hours before the wave became apparent at the surface. Analysis indicates that a train of gravity waves was continuously generated by geostrophic adjustment in the exit region of the unbalanced upper-level jet streak as it approached the inflection axis in the height field immediately downstream of the maximum imbalance associated with the tropopause fold. A split front in the middle troposphere, characterized by the advance of the dry conveyor belt above the warm front, was overtaken by one of these propagating waves. During this merger process, a resonant interaction resulted, which promoted the rapid amplification and scale contraction of both the incipient wave (nonlinear wave development) and the split front (frontogenesis). The gravity wave and front aloft became inseparable following this merger. The situation became even more complex within a few hours as the vertical motion enhanced by this front-wave interaction acted upon a saturated, potentially unstable layer to produce elevated moist convection. An analysis of the temporal changes in the vertical profile of wave energy flux suggests that moist convective downdraughts efficiently transported the wave energy from the midlevels downward beneath the warm-front surface, where the wave became ducted. However, pure ducting was not sufficient for maintaining and amplifying the waves; rather, wave-CISK (Conditional Instability of the Second Kind) was crucial. This complex sequence of nonlinear interactions produced a long-lived, large-amplitude gravity wave that created hazardous winter weather and disrupted society over a broad and highly populated area. Although gravity waves with similar appearance to this large-amplitude wave of depression occasionally have been seen in other strong cyclogenesis cases involving a jet streak ahead of the upper-level trough axis, it is unknown whether other such events share this same sequence of interactions. [source] Detection and climatology of fronts in a high-resolution model reanalysis over the AlpsMETEOROLOGICAL APPLICATIONS, Issue 1 2010J. Jenkner Abstract The identification of low-level thermal fronts is particularly challenging in high-resolution model fields over complex terrain. Firstly, direct model output often contains numerical noise which spuriously influences the high-frequency variability of thermal parameters. Secondly, the boundary layer interferes via convection and consequently leaves its thermal marks on low levels. Here, an automated objective method for the detection of frontal lines is introduced which is designed to be insusceptible to consequences of small grid spacings. To this end, existing algorithms are readopted and combined in a novel way. The overall technique subdivides into a basic detection of fronts and a supplemental division into local fronts and synoptic fronts. The fundamental parts of the detection are: (1) a smoothing of the initial fields, (2) a definition of the frontal strength, and, (3) a localisation with the thermal front parameter. The local fronts are identified by means of a classification of open and closed thermal contours. The resulting data comprise the spatial outline of the frontal structures in a binary field as well as their type and movement. The novel methodology is applied to a 3 year high-resolution reanalysis over central Europe computed with the COSMO model using a grid spacing of 7 km. Grid-point based climatologies are derived for the Alpine region. Frequencies of occurrence and characteristics of motion are analysed for different frontal types. The novel climatology also provides quantitative evidence of dynamical properties such as the retardation of cold fronts ahead of mountains and the dissolution of warm fronts over mountains. Copyright © 2009 Royal Meteorological Society [source] |