Home About us Contact | |||
WAXS Patterns (wax + pattern)
Selected AbstractsMorphology and mechanical and viscoelastic properties of rubbery epoxy/organoclay montmorillonite nanocompositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007Amar Boukerrou Abstract The morphology and mechanical and viscoelastic properties of rubbery epoxy/organoclay montmorillonite (MMT) nanocomposites were investigated with wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), tensile testing, and dynamic mechanical thermal analysis. An ultrasonicator was used to apply external shearing forces to disperse the silicate clay layers in the epoxy matrix. The first step of the nanocomposite preparation consisted of swelling MMT in a curing agent, that is, an aliphatic diamine based on a polyoxypropylene backbone with a low viscosity for better diffusion into the intragalleries. Then, the epoxy prepolymer was added to the mixture. Better dispersion and intercalation of the nanoclay in the matrix were expected. The organic modification of MMT with octadecylammonium ions led to an increase in the initial d -spacing (the [d001] peak) from 14.4 to 28.5 Å, as determined by WAXS; this indicated the occurrence of an intercalation. The addition of 5 phr MMTC18 (MMT after the modification) to the epoxy matrix resulted in a finer dispersion, as evidenced by the disappearance of the diffraction peak in the WAXS pattern and TEM images. The mechanical and viscoelastic properties were improved for both MMT and MMTC18 nanocomposites, but they were more pronounced for the modified ones. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 103: 3547,3552, 2007 [source] Micromechanical behavior related to the nanostructure of biodegradable polyestersJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010M. E. Cagiao Abstract The microhardness of a series of biodegradable polyesters was determined. The nanostructural features of these materials were studied by wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and differential scanning calorimetry. Analysis of the SAXS and WAXS patterns allowed direct derivation of the degree of crystallinity and crystal thickness values, and correlations of the micromechanical properties are presented. The differences in the thermal and mechanical properties exhibited by the studied systems and the ones found in other aromatic polyesters are explained as due to the different chemical natures of the monomeric units. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] DIATOM SILICA BIOMINERALIZATION: AT NANOSCALE LEVEL A CHEMICALLY UNIFORM PROCESSJOURNAL OF PHYCOLOGY, Issue 2000E. G. Vrieling Using a high-brilliance synchrotron X-ray source, combined small- and wide-angle X-ray scattering (SAXS and WAXS) was applied to study nanoscale characteristics, in particular pore size in the range of 3 to 65 nm, of a variety of unialgal cultures of centric and pennate diatoms, and of mixed diatom populations sampled in the field. Results of scattering analysis were compared with details of pore size, structure and orientation visible at the electron microscopic level. WAXS patterns did not reveal any crystalline phase or features of microcrystallinity (resolution 0.07 to 0.51 nm), which implies a totally amorphous character of the SiO2 matrix of the frustule material. SAXS data (resolution 3 to 65 nm) provided information on geometry, size, and distribution of pores in the silica. Overall, two pore regions were recognized that were common to the silica of all samples: the smallest (d less than 10 nm) regularly spaced and shaped spherically, the larger (up to 65 nm) being cylinders or slits. Apparently, at a nanoscale level diatomaceous silica is quite homologous among species, in agreement with the chemical principles of silica polymerization under the conditions of pH and precursor concentrations inside the silicon deposition vesicle. The final frustule "macro"-morphology is of course species-specific, being determined genetically. Synthetically-derived MCM-type silicas have a similarly organized pore distribution in an amorphous silica matrix as we found in all diatom species studied. We therefore suggest that organic molecules of a kind used as structure-directing agents to produce these artificial silicas play a role in the nucleation of the silica polymerization reaction and the shaping of pore morphology inside the silicon deposition vesicle of diatoms. Structure-directing molecules now await isolation from the SDV, followed by identification and characterisation by molecular techniques. [source] Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle x-ray scattering studyJOURNAL OF PHYCOLOGY, Issue 1 2000Engel G. Vrieling Combined small and wide angle X-ray scattering (SAXS and WAXS) analysis was applied to purified biogenic silica of cultured diatom frustules and of natural populations sampled on marine tidal flats. The overall WAXS patterns did not reveal crystalline phases (WAXS domain between 0.07 to 0.5 nm) in this biogenic silica, which is in line with previous reports on the amorphous character of the SiO2 matrix of diatom frustules. One exception was the silica of the pennate species Cylindrotheca fusiformis Reimann et Lewin, which revealed wide peaks in the WAXS spectra. These peaks either indicate the presence of a yet unknown crystalline phase with a repetitive distance (d -value ,0.06 nm) or are caused by the ordering of the fibrous silica fragments; numerous girdle bands. The SAXS spectra revealed the size range of pores (diameter d between 3.0 and 65 nm), the presence of distinct pores (slope transitions), and structure factors (oscillation of the spectra). All slopes varied in the range of ,4.0 to ,2.5, with two clear common regions among species: d < 10 nm (slopes ,4, denoted as region I and also called the Porod region), and 10.0 < d < 40.0 nm (slopes ,2.9 to ,3.8, denoted as region II). The existence of these common regions suggests the presence of comparable form (region I) and structure (region II) factors, respectively the shape of the primary building units of the silica and the geometry of the pores. Contrast variation experiments using dibromomethane to fill pores in the SiO2 matrix showed that scattering was caused by pores rather than silica particles. Electron microscopic analysis confirmed the presence of circular, elliptical, and rectangular pores ranging in size from 3 to 65 nm, determining the structure factor. The fine architecture (length/width ratio of pore diameters) and distribution of the pores, however, seemed to be influenced by environmental factors, such as the salinity of and additions of AlCl3 to the growth medium. The results indicate that diatoms deposit silica with pores <50 nm in size and are highly homologous with respect to geometry. Consequently, it is suggested that in diatoms, whether pennate or centric, the formation of silica at a nanoscale level is a uniform process. [source] Strain-Controlled Tensile Deformation Behavior and Relaxation Properties of Isotactic Poly(1-butene) and Its Ethylene CopolymersMACROMOLECULAR SYMPOSIA, Issue 1 2004Mahmoud Al-Hussein Abstract The tensile deformation behaviour of poly(1-butene) and two of its ethylene copoloymers was studied at room temperature. This was done by investigating true stress-strain curves at constant strain rates, elastic recovery and stress relaxation properties and in-situ WAXS patterns during the deformation process. As for a series of semicrystalline polymers in previous studies, a strain-controlled deformation behaviour was found. The differential compliance, the recovery properties and the stress relaxation curves changed simultaneously at well-defined points. The strains at which these points occurred along the true stress-strain remained constant for the different samples despite their different percentage crystallinities. The well-defined way in which the different samples respond to external stresses complies with the granular substructure of the crystalline lamellae in a semicrystalline polymer. [source] Recycling of poly(ethylene terephthalate) as polymer-polymer composites,POLYMER ENGINEERING & SCIENCE, Issue 4 2002M. Evstatiev Microfibrillar reinforced composites (MFC) comprising an isotropic matrix from a lower melting polymer reinforced by microfibrils of a higher melting polymer were manufactured under industrially relevant conditions and processed via injection molding. Low density polyethylene (LDPE) (matrix) and recycled poly(ethylene terephthalate) (PET) (reinforcing material) from bottles were melt blended (in 30/70 and 50/50 PET/LDPE wt ratio) and extruded, followed by continuous drawing, pelletizing and injection molding of dogbone samples. Samples of each stage of MFC manufacturing and processing were characterized by means of scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS), dynamic mechanical thermal analysis (DMTA), and mechanical testing. SEM and WAXS showed that the extruded blend is isotropic but becomes highly oriented after drawing, being converted into a polymer-polymer composite upon injection molding at temperatures below the melting temperature of PET. This MFC is characterized by an isotropic LDPE matrix reinforced by randomly distributed PET microfibrils, as concluded from the WAXS patterns and SEM observations. The MFC dogbone samples show impressive mechanical properties,the elastic modulus is about 10 times higher than that of LDPE and about three times higher than reinforced LDPE with glass spheres, approaching the modulus of LDPE reinforced with 30 wt% short-glass fibers (GF). The tensile strength is at least two times higher than that of LDPE or of reinforced LDPE with glass spheres, approaching that of reinforced LDPE with 30 wt% GF. The impact strength of LDPE increases by 50% after reinforcement with PET. It is concluded that: (i) the MFC approach can be applied in industrially relevant conditions using various blend partners, and (ii) the MFC concept represents an attractive alternative for recycling of PET as well as other polymers. [source] Differing Expansion Contributions of Three Investment Materials Used for Casting TitaniumJOURNAL OF PROSTHODONTICS, Issue 5 2009Danny Low BDS, MScDent, MScMed Abstract Purpose: This laboratory study aimed at investigating the effect of setting expansion (SE), which could enlarge a wax pattern by concurrent exothermic reaction. Materials and Methods: Two phosphate-bonded investment materials (Rematitan Plus, T-invest C & B) and alumina-magnesia-based investment material (Titavest CB) were subjected to setting temperature and SE measurements (n = 10). Full-crown wax patterns were prepared from metal dies having the same design. Crown castings (n = 6) were made using a one-chamber high-pressure casting machine. Commercially pure titanium ingot (Japanese Industrial Standard Class II) was used for each casting. Dimensional accuracy of the cast crowns was expressed by marginal discrepancy for a pair of wax pattern and casting prepared from the same die. All results were then subjected to regression analysis. Results: Rematitan Plus gave the highest setting temperature (about 70°C) and the highest SE (1.16 ± 0.01%) almost concurrently. The result was that Rematitan Plus produced oversized crowns from the lowest thermal expansion (TE) value (0.53 ± 0.05%) reducing the linear correlation to 0.80 (p < 0.05). No significant linear relationship was found between SE of investment material and crown-casting accuracy. Conclusions: The almost concurrent occurrence of high SE and high setting temperature generation in Rematitan Plus enlarged the wax pattern and effectively supplemented its low TE to produce oversized crowns. Despite this adverse effect, the correlation between TE and crown accuracy was still high. It is generally expected that the TE values given by manufacturers predict crown accuracy, when uniform TE, small SE, and minimum heat generation during setting are assured. [source] |