Below-ground Competition (below-ground + competition)

Distribution by Scientific Domains


Selected Abstracts


Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift

ECOLOGY LETTERS, Issue 8 2004
F. Ludwig
Abstract Under large East African Acacia trees, which were known to show hydraulic lift, we experimentally tested whether tree roots facilitate grass production or compete with grasses for below-ground resources. Prevention of tree,grass interactions through root trenching led to increased soil water content indicating that trees took up more water from the topsoil than they exuded via hydraulic lift. Biomass was higher in trenched plots compared to controls probably because of reduced competition for water. Stable isotope analyses of plant and source water showed that grasses which competed with trees used a greater proportion of deep water compared with grasses in trenched plots. Grasses therefore used hydraulically lifted water provided by trees, or took up deep soil water directly by growing deeper roots when competition with trees occurred. We conclude that any facilitative effect of hydraulic lift for neighbouring species may easily be overwhelmed by water competition in (semi-) arid regions. [source]


Lack of relationship between below-ground competition and allocation to roots in 10 grassland species

JOURNAL OF ECOLOGY, Issue 4 2003
James F. Cahill Jr
Summary 1A field experiment in a native grassland in Central Alberta, Canada, tested whether plants alter relative allocation to roots vs. shoots in response to below-ground competition, and whether the mass of a species' root system accounts for interspecific differences in below-ground competitive response. 2Seedlings of each of 10 native species were transplanted into the naturally occurring vegetation in the field at the start of the growing season. Root interactions between the target plants and their neighbours were manipulated through the use of PVC root exclusion tubes, with target plants grown with or without potential root interactions with their neighbours. Neighbour shoots were also tied back, forcing any target,neighbour interactions to be below ground. 3Below-ground competition generally reduced plant growth, with its relative magnitude varying among species. 4An allometric analysis indicated that competition below ground did not result in an increase in the relative biomass allocated to roots for any of the 10 target species. This is counter to the growth-balance hypothesis (and optimal foraging theory). Below-ground competition did increase root : shoot ratios, but this was due to reduced plant size (small plants have larger root : shoot ratios), rather than adaptive plasticity. 5A species' below-ground competitive ability was not related to its root system size. Although this finding is counter to commonly made assumptions, it is supported by other work demonstrating below-ground competition to be generally size-symmetric. 6Despite the majority of plant,plant interactions in grasslands being below ground, our understanding of plant competition above ground is significantly more robust. Several wide-spread assumptions regarding below-ground competition are suspect, and more multispecies studies such as this are required to provide a fuller picture of how plants respond to, and compete for, soil resources. [source]


Assessing the dominance of Phleum pratense cv. climax, a species commonly used for ski trail restoration

APPLIED VEGETATION SCIENCE, Issue 2 2009
Francis Isselin-Nondedeu
Abstract Questions: (1) Are some species used for ski trail restoration too dominant to allow native species to re-establish? (2) What plant traits can be used to predict which species are good competitors? We tested the hypothesis that limited native species establishment on ski trails is caused by (1) the dominance of Phleum pratense cv. climax (PPC) and (2) the asymmetry of competitive interactions. Location: Sub-alpine area in the northern French Alps. Methods: PPC was cultivated outdoors over 2 years with 15 alpine species in a systematic design with high- and low-nutrient soil conditions. For each species relative survival, competitive performance and relationships with plant traits were measured. Results: PPC exerted strong dominance on most of its neighbouring species. Survival performance of Anthyllis vulneraria, Luzula sudetica and Lotus alpinus were dramatically reduced. Results of above-ground competition showed that species were trapped in asymmetric competition. Festuca rubra, Trifolium repens, Alchemilla xanthochlora, Trifolium pratense and Plantago alpina best counteracted PPC. Below-ground competition was more symmetric, particularly at the high nutrient level. Plant traits such as biomass, canopy size and specific leaf area were positively correlated with competitive performance of the species. Conclusion: The study has implications for the management of restored ski trails since PPC may hinder the establishment of native sub-alpine species. Consequently, recommendations should focus on (1) maintaining a low proportion or decreasing the proportion of PPC seeds in the revegetation mix and (2) reducing soil fertilization. Plant traits and competition experiments can help to predict changes in restored grasslands. [source]


Above- versus below-ground competitive effects and responses of a guild of temperate tree species

JOURNAL OF ECOLOGY, Issue 1 2009
K. David Coates
Summary 1The neutral theory debate has highlighted the scarcity of robust empirical estimates of the magnitude of competitive effects and responses within guilds of co-occurring tree species. Our analysis quantifies the relative magnitude of all possible pairwise competitive interactions within a guild of nine co-occurring tree species in temperate forests of northern, interior British Columbia, and explicitly partitions the competitive effects of neighbours into the effects of shading versus the residual effects of ,crowding', assumed to reflect below-ground competition. 2Models that treated neighbours as equivalent in their competitive effects were the most parsimonious for the five species with the smallest sample sizes. For the remaining species (samples sizes of > 150 individuals), the best models estimated separate competition coefficients for all nine species of neighbours. We take this as evidence that species do indeed differ in their competitive effects, but that there can be a minimum sample size required to discriminate between them. 3There was a strong size-dependency in potential growth. Six species showed an optimal growth at a size between 5 and 20 cm diameter. Potential growth declined moderately to strongly as diameter increased. Sensitivity to crowding varied as a function of tree size for five of the nine species; however, this response was not consistent by tree species. 4The magnitude of reduction in growth due to crowding was greater on average than the reduction in growth due to shading, except for the two least shade tolerant conifers. Sensitivity to shading among the conifer species was correlated with their shade tolerance. 5The per capita effects of crowding by different species of neighbours varied widely. A large number of the estimated pairwise per capita competition coefficients were very low. The relative magnitude of the strength of intra- versus interspecific competition also varied widely among the tree species. 6Synthesis. Model selection techniques effectively separated above- and below-ground competition in complex forests, and allowed us to assess differences among species in competitive effects and responses. While below-ground effects were strong, they were due to proximity of neighbours from a very specific (and small) subset of strong competitors within the guild. Response to crowding varied with tree size but the nature of the relationship varied widely among the species. [source]


Desert shrubs have negative or neutral effects on annuals at two levels of water availability in arid lands of South Australia

JOURNAL OF ECOLOGY, Issue 6 2008
James T. Weedon
Abstract 1Perennial plants have been shown to facilitate understorey annual plant species in arid lands through the modification of spatial patterns of resources and conditions. This effect can result from a balance between simultaneously positive and negative interactions, both direct and indirect. This balance may shift with temporal variability in water availability. 2We conducted a field experiment in a chenopod shrubland in South Australia to separate the effects of shade, below-ground competition, and soil modification by shrubs on the performance of annual plants, and to determine if the strength and direction of the interaction shifted with changes in water availability. 3Annual plant diversity and seedling density was highest in plots established in open sites away from the dominant shrubs (Maireana sedifolia). Experimental removal of M. sedifolia increased seedling density compared to plots under undisturbed shrubs and plots where the removed shrub was replaced with artificial shade. Shading of open plots also reduced seedling density. Annual plant biomass was highest in areas where shrubs had been removed and was reduced by artificial shading. Biomass was higher in open plots than under intact shrubs. Experimental water addition did not alter plant density, but increased biomass across all treatments, particularly in artificially shaded bush plots. 4Synthesis. Our results show that the overall effect of shrubs on the annual plant community in the system is negative under the range of water availabilities experienced during the experiment. This negative net-effect results from a combination of simultaneous facilitation via soil modification, and above- and below-ground competition. Assessment in different systems of different combinations of mechanisms that have simultaneously positive and negative effects will allow us to refine hypotheses seeking to explain the relative importance of facilitation across spatial and temporal gradients. [source]


Lack of relationship between below-ground competition and allocation to roots in 10 grassland species

JOURNAL OF ECOLOGY, Issue 4 2003
James F. Cahill Jr
Summary 1A field experiment in a native grassland in Central Alberta, Canada, tested whether plants alter relative allocation to roots vs. shoots in response to below-ground competition, and whether the mass of a species' root system accounts for interspecific differences in below-ground competitive response. 2Seedlings of each of 10 native species were transplanted into the naturally occurring vegetation in the field at the start of the growing season. Root interactions between the target plants and their neighbours were manipulated through the use of PVC root exclusion tubes, with target plants grown with or without potential root interactions with their neighbours. Neighbour shoots were also tied back, forcing any target,neighbour interactions to be below ground. 3Below-ground competition generally reduced plant growth, with its relative magnitude varying among species. 4An allometric analysis indicated that competition below ground did not result in an increase in the relative biomass allocated to roots for any of the 10 target species. This is counter to the growth-balance hypothesis (and optimal foraging theory). Below-ground competition did increase root : shoot ratios, but this was due to reduced plant size (small plants have larger root : shoot ratios), rather than adaptive plasticity. 5A species' below-ground competitive ability was not related to its root system size. Although this finding is counter to commonly made assumptions, it is supported by other work demonstrating below-ground competition to be generally size-symmetric. 6Despite the majority of plant,plant interactions in grasslands being below ground, our understanding of plant competition above ground is significantly more robust. Several wide-spread assumptions regarding below-ground competition are suspect, and more multispecies studies such as this are required to provide a fuller picture of how plants respond to, and compete for, soil resources. [source]


Simulated effects of herb competition on planted Quercus faginea seedlings in Mediterranean abandoned cropland

APPLIED VEGETATION SCIENCE, Issue 2 2003
Benayas Rey
Abstract. We tested simulated effects of herb competition on the performance of planted seedlings of Quercus faginea ssp. faginea in Mediterranean abandoned cropland. We produced three types of environment with respect to herb competition: absence of competition (AC), below-ground competition (BGC), and total competition (TC). We assessed the performance of Q. faginea seedlings in each treatment in five ways: (1) seedling mortality, (2) leaf length and total plant leaf area, (3) water potential, (4) total biomass and biomass allocation, and (5) non-structural carbohydrate storage in different plant organs. We also measured (6) soil moisture at different depths and (7) biomass production of herbs. The TC treatment reduced water availability more than the BGC treatment, in agreement with the most pronounced water stress in seedlings under TC conditions. BGC and TC treatments showed a high and similar seedling mortality, which was one order of magnitude higher than that in the AC treatment. Competition treatments affected glucose concentration in both shoots and roots, and followed the rank TC > BGC > AC. Q. faginea seedlings might compensate a lower water availability through glucose accumulation in leaves to reduce the osmotic potential. There was a maximum starch concentration in the BGC treatment that hints that a moderate resource limitation would limit tissue growth but not carbon assimilation. We conclude that the negative effects of herbs on Q. faginea seedlings are mostly a result of competition for water, and that this competition is noticeable since the earliest stages of the establishment. Complete weed removal is a technique that would strongly improve seedling survivorship. [source]